Cargando…
Gene and Blood Analysis Reveal That Transfer from Brackish Water to Freshwater Is More Stressful to the Silverside Odontesthes humensis
Silversides are fish that inhabit marine coastal waters, coastal lagoons, and estuarine regions in southern South America. The freshwater (FW) silversides have the ability to tolerate salinity variations. Odontesthes humensis have similar habitats and biological characteristics of congeneric O. bona...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5836595/ https://www.ncbi.nlm.nih.gov/pubmed/29541090 http://dx.doi.org/10.3389/fgene.2018.00028 |
_version_ | 1783303992333303808 |
---|---|
author | Silveira, Tony L. R. Martins, Gabriel B. Domingues, William B. Remião, Mariana H. Barreto, Bruna F. Lessa, Ingrid M. Santos, Lucas Pinhal, Danillo Dellagostin, Odir A. Seixas, Fabiana K. Collares, Tiago Robaldo, Ricardo B. Campos, Vinicius F. |
author_facet | Silveira, Tony L. R. Martins, Gabriel B. Domingues, William B. Remião, Mariana H. Barreto, Bruna F. Lessa, Ingrid M. Santos, Lucas Pinhal, Danillo Dellagostin, Odir A. Seixas, Fabiana K. Collares, Tiago Robaldo, Ricardo B. Campos, Vinicius F. |
author_sort | Silveira, Tony L. R. |
collection | PubMed |
description | Silversides are fish that inhabit marine coastal waters, coastal lagoons, and estuarine regions in southern South America. The freshwater (FW) silversides have the ability to tolerate salinity variations. Odontesthes humensis have similar habitats and biological characteristics of congeneric O. bonariensis, the most studied silverside species and with great economic importance. Studies revealed that O. bonariensis is not fully adapted to FW, despite inhabiting hyposmotic environments in nature. However, there is little information about stressful environments for cultivation of silverside O. humensis. Thus, the aim of this study was to evaluate the stress and osmoregulation responses triggered by the osmotic transfers on silverside O. humensis. Silversides were acclimated to FW (0 ppt) and to brackish water (BW, 10 ppt) and then they were exposed to opposite salinity treatment. Silverside gills and blood were sampled on pre-transfer (D0) and 1, 7, and 15 days (D1, D7, and D15) after changes in environmental salinity, the expression levels of genes atp1a3a, slc12a2b, kcnh1, and hspa1a were determined by quantitative reverse transcription-PCR for evaluation of osmoregulatory and stress responses. Furthermore, glycemia, hematocrit, and osmolality were also evaluated. The expression of atp1a3a was up- and down-regulated at D1 after the FW–BW and BW–FW transfers, respectively. Slc12a2b was up-regulated after FW–BW transfer. Similarly, kcnh1 and hspa1a were up-regulated at D1 after the BW–FW transfer. O. humensis blood osmolality decreased after the exposure to FW. It remained stable after exposure to BW, indicating an efficient hyposmoregulation. The glycemia had a peak at D1 after BW–FW transfer. No changes were observed in hematocrit. The return to the pre-transfer levels at D7 after the significant increases in responses of almost all evaluated molecular and blood parameters indicated that this period is enough for acclimation to the experimental conditions. In conclusion, our results suggest that BW–FW transfer is more stressful to O. humensis than FW–BW transfer and the physiology of O. humensis is only partially adapted to FW. |
format | Online Article Text |
id | pubmed-5836595 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-58365952018-03-14 Gene and Blood Analysis Reveal That Transfer from Brackish Water to Freshwater Is More Stressful to the Silverside Odontesthes humensis Silveira, Tony L. R. Martins, Gabriel B. Domingues, William B. Remião, Mariana H. Barreto, Bruna F. Lessa, Ingrid M. Santos, Lucas Pinhal, Danillo Dellagostin, Odir A. Seixas, Fabiana K. Collares, Tiago Robaldo, Ricardo B. Campos, Vinicius F. Front Genet Genetics Silversides are fish that inhabit marine coastal waters, coastal lagoons, and estuarine regions in southern South America. The freshwater (FW) silversides have the ability to tolerate salinity variations. Odontesthes humensis have similar habitats and biological characteristics of congeneric O. bonariensis, the most studied silverside species and with great economic importance. Studies revealed that O. bonariensis is not fully adapted to FW, despite inhabiting hyposmotic environments in nature. However, there is little information about stressful environments for cultivation of silverside O. humensis. Thus, the aim of this study was to evaluate the stress and osmoregulation responses triggered by the osmotic transfers on silverside O. humensis. Silversides were acclimated to FW (0 ppt) and to brackish water (BW, 10 ppt) and then they were exposed to opposite salinity treatment. Silverside gills and blood were sampled on pre-transfer (D0) and 1, 7, and 15 days (D1, D7, and D15) after changes in environmental salinity, the expression levels of genes atp1a3a, slc12a2b, kcnh1, and hspa1a were determined by quantitative reverse transcription-PCR for evaluation of osmoregulatory and stress responses. Furthermore, glycemia, hematocrit, and osmolality were also evaluated. The expression of atp1a3a was up- and down-regulated at D1 after the FW–BW and BW–FW transfers, respectively. Slc12a2b was up-regulated after FW–BW transfer. Similarly, kcnh1 and hspa1a were up-regulated at D1 after the BW–FW transfer. O. humensis blood osmolality decreased after the exposure to FW. It remained stable after exposure to BW, indicating an efficient hyposmoregulation. The glycemia had a peak at D1 after BW–FW transfer. No changes were observed in hematocrit. The return to the pre-transfer levels at D7 after the significant increases in responses of almost all evaluated molecular and blood parameters indicated that this period is enough for acclimation to the experimental conditions. In conclusion, our results suggest that BW–FW transfer is more stressful to O. humensis than FW–BW transfer and the physiology of O. humensis is only partially adapted to FW. Frontiers Media S.A. 2018-02-06 /pmc/articles/PMC5836595/ /pubmed/29541090 http://dx.doi.org/10.3389/fgene.2018.00028 Text en Copyright © 2018 Silveira, Martins, Domingues, Remião, Barreto, Lessa, Santos, Pinhal, Dellagostin, Seixas, Collares, Robaldo and Campos. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Genetics Silveira, Tony L. R. Martins, Gabriel B. Domingues, William B. Remião, Mariana H. Barreto, Bruna F. Lessa, Ingrid M. Santos, Lucas Pinhal, Danillo Dellagostin, Odir A. Seixas, Fabiana K. Collares, Tiago Robaldo, Ricardo B. Campos, Vinicius F. Gene and Blood Analysis Reveal That Transfer from Brackish Water to Freshwater Is More Stressful to the Silverside Odontesthes humensis |
title | Gene and Blood Analysis Reveal That Transfer from Brackish Water to Freshwater Is More Stressful to the Silverside Odontesthes humensis |
title_full | Gene and Blood Analysis Reveal That Transfer from Brackish Water to Freshwater Is More Stressful to the Silverside Odontesthes humensis |
title_fullStr | Gene and Blood Analysis Reveal That Transfer from Brackish Water to Freshwater Is More Stressful to the Silverside Odontesthes humensis |
title_full_unstemmed | Gene and Blood Analysis Reveal That Transfer from Brackish Water to Freshwater Is More Stressful to the Silverside Odontesthes humensis |
title_short | Gene and Blood Analysis Reveal That Transfer from Brackish Water to Freshwater Is More Stressful to the Silverside Odontesthes humensis |
title_sort | gene and blood analysis reveal that transfer from brackish water to freshwater is more stressful to the silverside odontesthes humensis |
topic | Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5836595/ https://www.ncbi.nlm.nih.gov/pubmed/29541090 http://dx.doi.org/10.3389/fgene.2018.00028 |
work_keys_str_mv | AT silveiratonylr geneandbloodanalysisrevealthattransferfrombrackishwatertofreshwaterismorestressfultothesilversideodontestheshumensis AT martinsgabrielb geneandbloodanalysisrevealthattransferfrombrackishwatertofreshwaterismorestressfultothesilversideodontestheshumensis AT domingueswilliamb geneandbloodanalysisrevealthattransferfrombrackishwatertofreshwaterismorestressfultothesilversideodontestheshumensis AT remiaomarianah geneandbloodanalysisrevealthattransferfrombrackishwatertofreshwaterismorestressfultothesilversideodontestheshumensis AT barretobrunaf geneandbloodanalysisrevealthattransferfrombrackishwatertofreshwaterismorestressfultothesilversideodontestheshumensis AT lessaingridm geneandbloodanalysisrevealthattransferfrombrackishwatertofreshwaterismorestressfultothesilversideodontestheshumensis AT santoslucas geneandbloodanalysisrevealthattransferfrombrackishwatertofreshwaterismorestressfultothesilversideodontestheshumensis AT pinhaldanillo geneandbloodanalysisrevealthattransferfrombrackishwatertofreshwaterismorestressfultothesilversideodontestheshumensis AT dellagostinodira geneandbloodanalysisrevealthattransferfrombrackishwatertofreshwaterismorestressfultothesilversideodontestheshumensis AT seixasfabianak geneandbloodanalysisrevealthattransferfrombrackishwatertofreshwaterismorestressfultothesilversideodontestheshumensis AT collarestiago geneandbloodanalysisrevealthattransferfrombrackishwatertofreshwaterismorestressfultothesilversideodontestheshumensis AT robaldoricardob geneandbloodanalysisrevealthattransferfrombrackishwatertofreshwaterismorestressfultothesilversideodontestheshumensis AT camposviniciusf geneandbloodanalysisrevealthattransferfrombrackishwatertofreshwaterismorestressfultothesilversideodontestheshumensis |