Cargando…
Improving prediction of heterodimeric protein complexes using combination with pairwise kernel
BACKGROUND: Since many proteins become functional only after they interact with their partner proteins and form protein complexes, it is essential to identify the sets of proteins that form complexes. Therefore, several computational methods have been proposed to predict complexes from the topology...
Autores principales: | Ruan, Peiying, Hayashida, Morihiro, Akutsu, Tatsuya, Vert, Jean-Philippe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5836830/ https://www.ncbi.nlm.nih.gov/pubmed/29504897 http://dx.doi.org/10.1186/s12859-018-2017-5 |
Ejemplares similares
-
Prediction of Heterodimeric Protein Complexes from Weighted Protein-Protein Interaction Networks Using Novel Features and Kernel Functions
por: Ruan, Peiying, et al.
Publicado: (2013) -
Prediction of heterotrimeric protein complexes by two-phase learning using neighboring kernels
por: Ruan, Peiying, et al.
Publicado: (2014) -
A new pairwise kernel for biological network inference with support vector machines
por: Vert, Jean-Philippe, et al.
Publicado: (2007) -
Optimizing amino acid substitution matrices with a local alignment kernel
por: Saigo, Hiroto, et al.
Publicado: (2006) -
LBSizeCleav: improved support vector machine (SVM)-based prediction of Dicer cleavage sites using loop/bulge length
por: Bao, Yu, et al.
Publicado: (2016)