Cargando…
Application of Generative Autoencoder in De Novo Molecular Design
A major challenge in computational chemistry is the generation of novel molecular structures with desirable pharmacological and physiochemical properties. In this work, we investigate the potential use of autoencoder, a deep learning methodology, for de novo molecular design. Various generative auto...
Autores principales: | Blaschke, Thomas, Olivecrona, Marcus, Engkvist, Ola, Bajorath, Jürgen, Chen, Hongming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5836887/ https://www.ncbi.nlm.nih.gov/pubmed/29235269 http://dx.doi.org/10.1002/minf.201700123 |
Ejemplares similares
-
Molecular de-novo design through deep reinforcement learning
por: Olivecrona, Marcus, et al.
Publicado: (2017) -
Memory-assisted reinforcement learning for diverse molecular de novo design
por: Blaschke, Thomas, et al.
Publicado: (2020) -
Identification of Compounds That Interfere with High‐Throughput Screening Assay Technologies
por: David, Laurianne, et al.
Publicado: (2019) -
SMILES-based deep generative scaffold decorator for de-novo drug design
por: Arús-Pous, Josep, et al.
Publicado: (2020) -
Prediction of Promiscuity Cliffs Using Machine Learning
por: Blaschke, Thomas, et al.
Publicado: (2020)