Cargando…
Evaluating Functional Annotations of Enzymes Using the Gene Ontology
The Gene Ontology (GO) (Ashburner et al., Nat Genet 25(1):25–29, 2000) is a powerful tool in the informatics arsenal of methods for evaluating annotations in a protein dataset. From identifying the nearest well annotated homologue of a protein of interest to predicting where misannotation has occurr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837055/ https://www.ncbi.nlm.nih.gov/pubmed/27812939 http://dx.doi.org/10.1007/978-1-4939-3743-1_9 |
Sumario: | The Gene Ontology (GO) (Ashburner et al., Nat Genet 25(1):25–29, 2000) is a powerful tool in the informatics arsenal of methods for evaluating annotations in a protein dataset. From identifying the nearest well annotated homologue of a protein of interest to predicting where misannotation has occurred to knowing how confident you can be in the annotations assigned to those proteins is critical. In this chapter we explore what makes an enzyme unique and how we can use GO to infer aspects of protein function based on sequence similarity. These can range from identification of misannotation or other errors in a predicted function to accurate function prediction for an enzyme of entirely unknown function. Although GO annotation applies to any gene products, we focus here a describing our approach for hierarchical classification of enzymes in the Structure-Function Linkage Database (SFLD) (Akiva et al., Nucleic Acids Res 42(Database issue):D521–530, 2014) as a guide for informed utilisation of annotation transfer based on GO terms. |
---|