Cargando…
Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges
Risk prediction plays an important role in clinical cardiology research. Traditionally, most risk models have been based on regression models. While useful and robust, these statistical methods are limited to using a small number of predictors which operate in the same way on everyone, and uniformly...
Autores principales: | Goldstein, Benjamin A., Navar, Ann Marie, Carter, Rickey E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837244/ https://www.ncbi.nlm.nih.gov/pubmed/27436868 http://dx.doi.org/10.1093/eurheartj/ehw302 |
Ejemplares similares
-
Addressing the challenges of applying precision oncology
por: Shin, Seung Ho, et al.
Publicado: (2017) -
Moving beyond the Slit-Lamp Gonioscopy: Challenges and Future Opportunities
por: Cutolo, Carlo Alberto, et al.
Publicado: (2021) -
Moving Beyond Self‐Reported Race in Our Understanding of Cardiovascular Medicine
por: Luo, Nancy
Publicado: (2022) -
Moving beyond MTBE.
por: Tenenbaum, D J
Publicado: (2000) -
Moving beyond COVID
por: Tandon, Rajiv
Publicado: (2022)