Cargando…

Obesity-induced hypoadiponectinaemia: the opposite influences of central and peripheral fat compartments

BACKGROUND AND AIMS: The substantial reduction in adiponectin concentration among obese individuals seems to depend on fat distribution and is a marker of metabolic and adipose tissue dysfunction. We aimed to: (i) address whether abdominal fat from different compartments (visceral, deep subcutaneous...

Descripción completa

Detalles Bibliográficos
Autores principales: Borges, M C, Oliveira, I O, Freitas, D F, Horta, B L, Ong, K K, Gigante, D P, Barros, A J D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837355/
https://www.ncbi.nlm.nih.gov/pubmed/28369345
http://dx.doi.org/10.1093/ije/dyx022
Descripción
Sumario:BACKGROUND AND AIMS: The substantial reduction in adiponectin concentration among obese individuals seems to depend on fat distribution and is a marker of metabolic and adipose tissue dysfunction. We aimed to: (i) address whether abdominal fat from different compartments (visceral, deep subcutaneous abdominal and superficial subcutaneous abdominal) and gluteofemoral fat are independently associated with blood adiponectin concentration; and (ii) investigate whether abdominal (proxied by waist circumference) and gluteofemoral fat (proxied by hip circumference) accumulation causally determine blood adiponectin concentration. METHODS: To investigate the independent association of abdominal and gluteofemoral fat with adiponectin concentration, we used multivariable regression and data from 30-year-old adults from the 1982 Pelotas Birth Cohort (n = 2,743). To assess the causal role of abdominal and gluteofemoral fat accumulation on adiponectin concentration, we used Mendelian randomization and data from two consortia of genome-wide association studies—the GIANT (n > 210 000) and ADIPOGen consortia (n = 29 347). RESULTS: In the multivariable regression analysis, all abdominal fat depots were negatively associated with adiponectin concentration, specially visceral abdominal fat [men: β = −0.24 standard unit of log adiponectin per standard unit increase in abdominal fat; 95% confidence interval (CI) = −0.31, −0.18; P = 8*10(−13); women: β = −0.31; 95% CI = −0.36, −0.25; P = 7*10(−27)), whereas gluteofemoral fat was positively associated with adiponectin concentration (men: β = 0.13 standard unit of log adiponectin per standard unit increase in gluteofemoral fat; 95% CI = 0.03, 0.22; P = 0.008; women: β = 0.24; 95% CI = 0.17, 0.31; P = 7*10(−11)). In the Mendelian randomization analysis, genetically-predicted waist circumference was inversely related to blood adiponectin concentration (β = −0.27 standard unit of log adiponectin per standard unit increase in waist circumference; 95% CI = −0.36, -0.19; P = 2*10(−11)), whereas genetically-predicted hip circumference was positively associated with blood adiponectin concentration (β = 0.17 standard unit of log adiponectin per standard unit increase in hip circumference; 95% CI = 0.11, 0.24; P = 1*10(−7)). CONCLUSIONS: These results support the hypotheses that there is a complex interplay between body fat distribution and circulating adiponectin concentration, and that whereas obesity-induced hypoadiponectinaemia seems to be primarily attributed to abdominal fat accumulation, gluteofemoral fat accumulation is likely to exert a protective effect.