Cargando…
Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture
PURPOSE: Conditional reprogramming methods allow for the inexhaustible in vitro proliferation of primary epithelial cells from human tissue specimens. This methodology has the potential to enhance the utility of primary cell culture as a model for mammary gland research. However, few studies have sy...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837767/ https://www.ncbi.nlm.nih.gov/pubmed/29545915 http://dx.doi.org/10.18632/oncotarget.23817 |
_version_ | 1783304145397088256 |
---|---|
author | Jin, Liting Qu, Ying Gomez, Liliana J. Chung, Stacey Han, Bingchen Gao, Bowen Yue, Yong Gong, Yiping Liu, Xuefeng Amersi, Farin Dang, Catherine Giuliano, Armando E. Cui, Xiaojiang |
author_facet | Jin, Liting Qu, Ying Gomez, Liliana J. Chung, Stacey Han, Bingchen Gao, Bowen Yue, Yong Gong, Yiping Liu, Xuefeng Amersi, Farin Dang, Catherine Giuliano, Armando E. Cui, Xiaojiang |
author_sort | Jin, Liting |
collection | PubMed |
description | PURPOSE: Conditional reprogramming methods allow for the inexhaustible in vitro proliferation of primary epithelial cells from human tissue specimens. This methodology has the potential to enhance the utility of primary cell culture as a model for mammary gland research. However, few studies have systematically characterized this method in generating in vitro normal human mammary epithelial cell models. RESULTS: We show that cells derived from fresh normal breast tissues can be propagated and exhibit heterogeneous morphologic features. The cultures are composed of CK18, desmoglein 3, and CK19-positive luminal cells and vimentin, p63, and CK14-positive myoepithelial cells, suggesting the maintenance of in vivo heterogeneity. In addition, the cultures contain subpopulations with different CD49f and EpCAM expression profiles. When grown in 3D conditions, cells self-organize into distinct structures that express either luminal or basal cell markers. Among these structures, CK8-positive cells enclosing a lumen are capable of differentiation into milk-producing cells in the presence of lactogenic stimulus. Furthermore, our short-term cultures retain the expression of ERα, as well as its ability to respond to estrogen stimulation. MATERIALS AND METHODS: We have investigated conditionally reprogrammed normal epithelial cells in terms of cell type heterogeneity, cellular marker expression, and structural arrangement in two-dimensional (2D) and three-dimensional (3D) systems. CONCLUSIONS: The conditional reprogramming methodology allows generation of a heterogeneous culture from normal human mammary tissue in vitro. We believe that this cell culture model will provide a valuable tool to study mammary cell function and malignant transformation. |
format | Online Article Text |
id | pubmed-5837767 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-58377672018-03-15 Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture Jin, Liting Qu, Ying Gomez, Liliana J. Chung, Stacey Han, Bingchen Gao, Bowen Yue, Yong Gong, Yiping Liu, Xuefeng Amersi, Farin Dang, Catherine Giuliano, Armando E. Cui, Xiaojiang Oncotarget Research Paper PURPOSE: Conditional reprogramming methods allow for the inexhaustible in vitro proliferation of primary epithelial cells from human tissue specimens. This methodology has the potential to enhance the utility of primary cell culture as a model for mammary gland research. However, few studies have systematically characterized this method in generating in vitro normal human mammary epithelial cell models. RESULTS: We show that cells derived from fresh normal breast tissues can be propagated and exhibit heterogeneous morphologic features. The cultures are composed of CK18, desmoglein 3, and CK19-positive luminal cells and vimentin, p63, and CK14-positive myoepithelial cells, suggesting the maintenance of in vivo heterogeneity. In addition, the cultures contain subpopulations with different CD49f and EpCAM expression profiles. When grown in 3D conditions, cells self-organize into distinct structures that express either luminal or basal cell markers. Among these structures, CK8-positive cells enclosing a lumen are capable of differentiation into milk-producing cells in the presence of lactogenic stimulus. Furthermore, our short-term cultures retain the expression of ERα, as well as its ability to respond to estrogen stimulation. MATERIALS AND METHODS: We have investigated conditionally reprogrammed normal epithelial cells in terms of cell type heterogeneity, cellular marker expression, and structural arrangement in two-dimensional (2D) and three-dimensional (3D) systems. CONCLUSIONS: The conditional reprogramming methodology allows generation of a heterogeneous culture from normal human mammary tissue in vitro. We believe that this cell culture model will provide a valuable tool to study mammary cell function and malignant transformation. Impact Journals LLC 2017-12-22 /pmc/articles/PMC5837767/ /pubmed/29545915 http://dx.doi.org/10.18632/oncotarget.23817 Text en Copyright: © 2018 Jin et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (http://creativecommons.org/licenses/by/3.0/) (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Jin, Liting Qu, Ying Gomez, Liliana J. Chung, Stacey Han, Bingchen Gao, Bowen Yue, Yong Gong, Yiping Liu, Xuefeng Amersi, Farin Dang, Catherine Giuliano, Armando E. Cui, Xiaojiang Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture |
title | Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture |
title_full | Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture |
title_fullStr | Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture |
title_full_unstemmed | Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture |
title_short | Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture |
title_sort | characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837767/ https://www.ncbi.nlm.nih.gov/pubmed/29545915 http://dx.doi.org/10.18632/oncotarget.23817 |
work_keys_str_mv | AT jinliting characterizationofprimaryhumanmammaryepithelialcellsisolatedandpropagatedbyconditionalreprogrammedcellculture AT quying characterizationofprimaryhumanmammaryepithelialcellsisolatedandpropagatedbyconditionalreprogrammedcellculture AT gomezlilianaj characterizationofprimaryhumanmammaryepithelialcellsisolatedandpropagatedbyconditionalreprogrammedcellculture AT chungstacey characterizationofprimaryhumanmammaryepithelialcellsisolatedandpropagatedbyconditionalreprogrammedcellculture AT hanbingchen characterizationofprimaryhumanmammaryepithelialcellsisolatedandpropagatedbyconditionalreprogrammedcellculture AT gaobowen characterizationofprimaryhumanmammaryepithelialcellsisolatedandpropagatedbyconditionalreprogrammedcellculture AT yueyong characterizationofprimaryhumanmammaryepithelialcellsisolatedandpropagatedbyconditionalreprogrammedcellculture AT gongyiping characterizationofprimaryhumanmammaryepithelialcellsisolatedandpropagatedbyconditionalreprogrammedcellculture AT liuxuefeng characterizationofprimaryhumanmammaryepithelialcellsisolatedandpropagatedbyconditionalreprogrammedcellculture AT amersifarin characterizationofprimaryhumanmammaryepithelialcellsisolatedandpropagatedbyconditionalreprogrammedcellculture AT dangcatherine characterizationofprimaryhumanmammaryepithelialcellsisolatedandpropagatedbyconditionalreprogrammedcellculture AT giulianoarmandoe characterizationofprimaryhumanmammaryepithelialcellsisolatedandpropagatedbyconditionalreprogrammedcellculture AT cuixiaojiang characterizationofprimaryhumanmammaryepithelialcellsisolatedandpropagatedbyconditionalreprogrammedcellculture |