Cargando…
Elevated Ictal Brain Network Ictogenicity Enables Prediction of Optimal Seizure Control
Recent studies have shown that mathematical models can be used to analyze brain networks by quantifying how likely they are to generate seizures. In particular, we have introduced the quantity termed brain network ictogenicity (BNI), which was demonstrated to have the capability of differentiating b...
Autores principales: | Lopes, Marinho A., Richardson, Mark P., Abela, Eugenio, Rummel, Christian, Schindler, Kaspar, Goodfellow, Marc, Terry, John R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837986/ https://www.ncbi.nlm.nih.gov/pubmed/29545769 http://dx.doi.org/10.3389/fneur.2018.00098 |
Ejemplares similares
-
Quantification and Selection of Ictogenic Zones in Epilepsy Surgery
por: Laiou, Petroula, et al.
Publicado: (2019) -
Estimation of brain network ictogenicity predicts outcome from epilepsy surgery
por: Goodfellow, M., et al.
Publicado: (2016) -
An optimal strategy for epilepsy surgery: Disruption of the rich-club?
por: Lopes, Marinho A., et al.
Publicado: (2017) -
Computer models to inform epilepsy surgery strategies: prediction of postoperative outcome
por: Goodfellow, Marc, et al.
Publicado: (2017) -
A Model-Based Assessment of the Seizure Onset Zone Predictive Power to Inform the Epileptogenic Zone
por: Lopes, Marinho A., et al.
Publicado: (2019)