Cargando…
Spatial correlations between browsing on balsam fir by white‐tailed deer and the nutritional value of neighboring winter forage
Associational effects, that is, the influence of neighboring plants on herbivory suffered by a plant, are an outcome of forage selection. Although forage selection is a hierarchical process, few studies have investigated associational effects at multiple spatial scales. Because the nutritional quali...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5838068/ https://www.ncbi.nlm.nih.gov/pubmed/29531697 http://dx.doi.org/10.1002/ece3.3878 |
Sumario: | Associational effects, that is, the influence of neighboring plants on herbivory suffered by a plant, are an outcome of forage selection. Although forage selection is a hierarchical process, few studies have investigated associational effects at multiple spatial scales. Because the nutritional quality of plants can be spatially structured, it might differently influence associational effects across multiple scales. Our objective was to determine the radius of influence of neighbor density and nutritional quality on balsam fir (Abies balsamea) herbivory by white‐tailed deer (Odocoileus virginianus) in winter. We quantified browsing rates on fir and the density and quality of neighboring trees in a series of 10‐year‐old cutovers on Anticosti Island (Canada). We used cross‐correlations to investigate relationships between browsing rates and the density and nutritional quality of neighboring trees at distances up to 1,000 m. Balsam fir and white spruce (Picea glauca) fiber content and dry matter in vitro true digestibility were correlated with fir browsing rate at the finest extra‐patch scale (across distance of up to 50 m) and between cutover areas (300–400 m). These correlations suggest associational effects, that is, low nutritional quality of neighbors reduces the likelihood of fir herbivory (associational defense). Our results may indicate associational effects mediated by intraspecific variation in plant quality and suggest that these effects could occur at scales from tens to hundreds of meters. Understanding associational effects could inform strategies for restoration or conservation; for example, planting of fir among existing natural regeneration could be concentrated in areas of low nutritional quality. |
---|