Cargando…
The impact of creating mathematical formula to predict cardiovascular events in patients with heart failure
Since our retrospective study has formed a mathematical formula, α = f(x(1), …, x(252)), where α is the probability of cardiovascular events in patients with heart failure (HF) and x(1) is each clinical parameter, we prospectively tested the predictive capability and feasibility of the mathematical...
Autores principales: | Sakamoto, Mari, Fukuda, Hiroki, Kim, Jiyoong, Ide, Tomomi, Kinugawa, Shintaro, Fukushima, Arata, Tsutsui, Hiroyuki, Ishii, Akira, Ito, Shin, Asanuma, Hiroshi, Asakura, Masanori, Washio, Takashi, Kitakaze, Masafumi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5838101/ https://www.ncbi.nlm.nih.gov/pubmed/29507373 http://dx.doi.org/10.1038/s41598-018-22347-0 |
Ejemplares similares
-
Elucidation of the Strongest Predictors of Cardiovascular Events in Patients with Heart Failure
por: Fukuda, Hiroki, et al.
Publicado: (2018) -
Arterial stiffening is a crucial factor for left ventricular diastolic dysfunction in a community-based normotensive population
por: Mika, Maeda, et al.
Publicado: (2020) -
Predicting heart failure onset in the general population using a novel data-mining artificial intelligence method
por: Miyashita, Yohei, et al.
Publicado: (2023) -
Non-linear Equation using Plasma Brain Natriuretic Peptide Levels to Predict Cardiovascular Outcomes in Patients with Heart Failure
por: Fukuda, Hiroki, et al.
Publicado: (2016) -
The experimental model of transition from compensated cardiac hypertrophy to failure created by transverse aortic constriction in mice
por: Furihata, Takaaki, et al.
Publicado: (2016)