Cargando…

A fully analytical integration of properties over the 3D volume of the β sphere in topological atoms

Atomic multipole moments associated with a spherical volume fully residing within a topological atom (i.e., the β sphere) can be obtained analytically. Such an integration is thus free of quadrature grids. A general formula for an arbitrary rank spherical harmonic multipole moment is derived, for an...

Descripción completa

Detalles Bibliográficos
Autor principal: Popelier, Paul L. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5838411/
https://www.ncbi.nlm.nih.gov/pubmed/29322516
http://dx.doi.org/10.1002/jcc.25158
Descripción
Sumario:Atomic multipole moments associated with a spherical volume fully residing within a topological atom (i.e., the β sphere) can be obtained analytically. Such an integration is thus free of quadrature grids. A general formula for an arbitrary rank spherical harmonic multipole moment is derived, for an electron density comprising Gaussian primitives of arbitrary angular momentum. The closed expressions derived here are also sufficient to calculate the electrostatic potential, the two types of kinetic energy, as well as the potential energy between atoms. Some integrals have not been solved explicitly before but through recursion and substitution are broken down to more elementary listed integrals. The proposed method is based on a central formula that shifts Gaussian primitives from one center to another, which can be derived from the well‐known plane‐wave expansion (or Rayleigh equation). © 2018 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.