Cargando…

Fossil flowers from the early Palaeocene of Patagonia, Argentina, with affinity to Schizomerieae (Cunoniaceae)

BACKGROUND AND AIMS: Early Palaeocene (Danian) plant fossils from Patagonia provide information on the recovery from the end-Cretaceous extinction and Cenozoic floristic change in South America. Actinomorphic flowers with eight to ten perianth parts are described and evaluated in a phylogenetic fram...

Descripción completa

Detalles Bibliográficos
Autores principales: Jud, Nathan A, Gandolfo, Maria A, Iglesias, Ari, Wilf, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5838809/
https://www.ncbi.nlm.nih.gov/pubmed/29309506
http://dx.doi.org/10.1093/aob/mcx173
Descripción
Sumario:BACKGROUND AND AIMS: Early Palaeocene (Danian) plant fossils from Patagonia provide information on the recovery from the end-Cretaceous extinction and Cenozoic floristic change in South America. Actinomorphic flowers with eight to ten perianth parts are described and evaluated in a phylogenetic framework. The goal of this study is to determine the identity of these fossil flowers and to discuss their evolutionary, palaeoecological and biogeographical significance METHODS: More than 100 fossilized flowers were collected from three localities in the Danian Salamanca and Peñas Coloradas Formations in southern Chubut. They were prepared, photographed and compared with similar extant and fossil flowers using published literature and herbarium specimens. Phylogenetic analysis was performed using morphological and molecular data. KEY RESULTS: The fossil flowers share some but not all the synapomorphies that characterize the Schizomerieae, a tribe within Cunoniaceae. These features include the shallow floral cup, variable number of perianth parts arranged in two whorls, laciniate petals, anthers with a connective extension, and a superior ovary with free styles. The number of perianth parts is doubled and the in situ pollen is tricolporate, with a surface more like that of other Cunoniaceae outside Schizomerieae, such as Davidsonia or Weinmannia. CONCLUSIONS: An extinct genus of crown-group Cunoniaceae is recognized and placed along the stem lineage leading to Schizomerieae. Extant relatives are typical of tropical to southern-temperate rainforests, and these fossils likely indicate a similarly warm and wet temperate palaeoclimate. The oldest reliable occurrences of the family are fossil pollen and wood from the Upper Cretaceous of the Antarctica and Argentina, whereas in Australia the family first occurs in upper Palaeocene deposits. This discovery demonstrates that the family survived the Cretaceous–Palaeogene boundary event in Patagonia and that diversification of extant lineages in the family was under way by the earliest Cenozoic.