Cargando…
Novel real-time tumor-contouring method using deep learning to prevent mistracking in X-ray fluoroscopy
Robustness to obstacles is the most important factor necessary to achieve accurate tumor tracking without fiducial markers. Some high-density structures, such as bone, are enhanced on X-ray fluoroscopic images, which cause tumor mistracking. Tumor tracking should be performed by controlling “importa...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840203/ https://www.ncbi.nlm.nih.gov/pubmed/29285686 http://dx.doi.org/10.1007/s12194-017-0435-0 |
_version_ | 1783304528792125440 |
---|---|
author | Terunuma, Toshiyuki Tokui, Aoi Sakae, Takeji |
author_facet | Terunuma, Toshiyuki Tokui, Aoi Sakae, Takeji |
author_sort | Terunuma, Toshiyuki |
collection | PubMed |
description | Robustness to obstacles is the most important factor necessary to achieve accurate tumor tracking without fiducial markers. Some high-density structures, such as bone, are enhanced on X-ray fluoroscopic images, which cause tumor mistracking. Tumor tracking should be performed by controlling “importance recognition”: the understanding that soft-tissue is an important tracking feature and bone structure is unimportant. We propose a new real-time tumor-contouring method that uses deep learning with importance recognition control. The novelty of the proposed method is the combination of the devised random overlay method and supervised deep learning to induce the recognition of structures in tumor contouring as important or unimportant. This method can be used for tumor contouring because it uses deep learning to perform image segmentation. Our results from a simulated fluoroscopy model showed accurate tracking of a low-visibility tumor with an error of approximately 1 mm, even if enhanced bone structure acted as an obstacle. A high similarity of approximately 0.95 on the Jaccard index was observed between the segmented and ground truth tumor regions. A short processing time of 25 ms was achieved. The results of this simulated fluoroscopy model support the feasibility of robust real-time tumor contouring with fluoroscopy. Further studies using clinical fluoroscopy are highly anticipated. |
format | Online Article Text |
id | pubmed-5840203 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer Singapore |
record_format | MEDLINE/PubMed |
spelling | pubmed-58402032018-03-12 Novel real-time tumor-contouring method using deep learning to prevent mistracking in X-ray fluoroscopy Terunuma, Toshiyuki Tokui, Aoi Sakae, Takeji Radiol Phys Technol Article Robustness to obstacles is the most important factor necessary to achieve accurate tumor tracking without fiducial markers. Some high-density structures, such as bone, are enhanced on X-ray fluoroscopic images, which cause tumor mistracking. Tumor tracking should be performed by controlling “importance recognition”: the understanding that soft-tissue is an important tracking feature and bone structure is unimportant. We propose a new real-time tumor-contouring method that uses deep learning with importance recognition control. The novelty of the proposed method is the combination of the devised random overlay method and supervised deep learning to induce the recognition of structures in tumor contouring as important or unimportant. This method can be used for tumor contouring because it uses deep learning to perform image segmentation. Our results from a simulated fluoroscopy model showed accurate tracking of a low-visibility tumor with an error of approximately 1 mm, even if enhanced bone structure acted as an obstacle. A high similarity of approximately 0.95 on the Jaccard index was observed between the segmented and ground truth tumor regions. A short processing time of 25 ms was achieved. The results of this simulated fluoroscopy model support the feasibility of robust real-time tumor contouring with fluoroscopy. Further studies using clinical fluoroscopy are highly anticipated. Springer Singapore 2017-12-28 2018 /pmc/articles/PMC5840203/ /pubmed/29285686 http://dx.doi.org/10.1007/s12194-017-0435-0 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Terunuma, Toshiyuki Tokui, Aoi Sakae, Takeji Novel real-time tumor-contouring method using deep learning to prevent mistracking in X-ray fluoroscopy |
title | Novel real-time tumor-contouring method using deep learning to prevent mistracking in X-ray fluoroscopy |
title_full | Novel real-time tumor-contouring method using deep learning to prevent mistracking in X-ray fluoroscopy |
title_fullStr | Novel real-time tumor-contouring method using deep learning to prevent mistracking in X-ray fluoroscopy |
title_full_unstemmed | Novel real-time tumor-contouring method using deep learning to prevent mistracking in X-ray fluoroscopy |
title_short | Novel real-time tumor-contouring method using deep learning to prevent mistracking in X-ray fluoroscopy |
title_sort | novel real-time tumor-contouring method using deep learning to prevent mistracking in x-ray fluoroscopy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840203/ https://www.ncbi.nlm.nih.gov/pubmed/29285686 http://dx.doi.org/10.1007/s12194-017-0435-0 |
work_keys_str_mv | AT terunumatoshiyuki novelrealtimetumorcontouringmethodusingdeeplearningtopreventmistrackinginxrayfluoroscopy AT tokuiaoi novelrealtimetumorcontouringmethodusingdeeplearningtopreventmistrackinginxrayfluoroscopy AT sakaetakeji novelrealtimetumorcontouringmethodusingdeeplearningtopreventmistrackinginxrayfluoroscopy |