Cargando…
Novel real-time tumor-contouring method using deep learning to prevent mistracking in X-ray fluoroscopy
Robustness to obstacles is the most important factor necessary to achieve accurate tumor tracking without fiducial markers. Some high-density structures, such as bone, are enhanced on X-ray fluoroscopic images, which cause tumor mistracking. Tumor tracking should be performed by controlling “importa...
Autores principales: | Terunuma, Toshiyuki, Tokui, Aoi, Sakae, Takeji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840203/ https://www.ncbi.nlm.nih.gov/pubmed/29285686 http://dx.doi.org/10.1007/s12194-017-0435-0 |
Ejemplares similares
-
Explainability and controllability of patient‐specific deep learning with attention‐based augmentation for markerless image‐guided radiotherapy
por: Terunuma, Toshiyuki, et al.
Publicado: (2022) -
Comparison of dose–volume histograms between proton beam and X-ray conformal radiotherapy for locally advanced non-small-cell lung cancer
por: Ohno, Toshiki, et al.
Publicado: (2015) -
Comparison of adverse effects of proton and X-ray chemoradiotherapy for esophageal cancer using an adaptive dose–volume histogram analysis
por: Makishima, Hirokazu, et al.
Publicado: (2015) -
Just-in-time deep learning for real-time X-ray computed tomography
por: Graas, Adriaan, et al.
Publicado: (2023) -
Use of X-ray fluoroscopy in orthopedic operations: The patient’s perspective
por: Ul-Abadin, Zain, et al.
Publicado: (2009)