Cargando…
An accurate approximation formula for gamma function
In this paper, we present a very accurate approximation for the gamma function: [Formula: see text] as [Formula: see text] , and we prove that the function [Formula: see text] is strictly decreasing and convex from [Formula: see text] onto [Formula: see text] , where [Formula: see text]
Autores principales: | Yang, Zhen-Hang, Tian, Jing-Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840229/ https://www.ncbi.nlm.nih.gov/pubmed/29540975 http://dx.doi.org/10.1186/s13660-018-1646-6 |
Ejemplares similares
-
Windschitl type approximation formulas for the gamma function
por: Yang, Zhen-Hang, et al.
Publicado: (2018) -
Approximation for the gamma function via the tri-gamma function
por: You, Xu, et al.
Publicado: (2017) -
Padé approximant related to asymptotics for the gamma function
por: Li, Xin, et al.
Publicado: (2017) -
Padé approximant related to the Wallis formula
por: Lin, Long, et al.
Publicado: (2017) -
On approximating the modified Bessel function of the second kind
por: Yang, Zhen-Hang, et al.
Publicado: (2017)