Cargando…
A method for estimating the power of moments
Let X be an observable random variable with unknown distribution function [Formula: see text] , [Formula: see text] , and let [Formula: see text] We call θ the power of moments of the random variable X. Let [Formula: see text] be a random sample of size n drawn from [Formula: see text] . In this pap...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840234/ https://www.ncbi.nlm.nih.gov/pubmed/29540973 http://dx.doi.org/10.1186/s13660-018-1645-7 |
Sumario: | Let X be an observable random variable with unknown distribution function [Formula: see text] , [Formula: see text] , and let [Formula: see text] We call θ the power of moments of the random variable X. Let [Formula: see text] be a random sample of size n drawn from [Formula: see text] . In this paper we propose the following simple point estimator of θ and investigate its asymptotic properties: [Formula: see text] where [Formula: see text] , [Formula: see text] . In particular, we show that [Formula: see text] This means that, under very reasonable conditions on [Formula: see text] , [Formula: see text] is actually a consistent estimator of θ. |
---|