Cargando…

BASIS: High-performance bioinformatics platform for processing of large-scale mass spectrometry imaging data in chemically augmented histology

Mass Spectrometry Imaging (MSI) holds significant promise in augmenting digital histopathologic analysis by generating highly robust big data about the metabolic, lipidomic and proteomic molecular content of the samples. In the process, a vast quantity of unrefined data, that can amount to several h...

Descripción completa

Detalles Bibliográficos
Autores principales: Veselkov, Kirill, Sleeman, Jonathan, Claude, Emmanuelle, Vissers, Johannes P. C., Galea, Dieter, Mroz, Anna, Laponogov, Ivan, Towers, Mark, Tonge, Robert, Mirnezami, Reza, Takats, Zoltan, Nicholson, Jeremy K., Langridge, James I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840264/
https://www.ncbi.nlm.nih.gov/pubmed/29511258
http://dx.doi.org/10.1038/s41598-018-22499-z
_version_ 1783304542829412352
author Veselkov, Kirill
Sleeman, Jonathan
Claude, Emmanuelle
Vissers, Johannes P. C.
Galea, Dieter
Mroz, Anna
Laponogov, Ivan
Towers, Mark
Tonge, Robert
Mirnezami, Reza
Takats, Zoltan
Nicholson, Jeremy K.
Langridge, James I.
author_facet Veselkov, Kirill
Sleeman, Jonathan
Claude, Emmanuelle
Vissers, Johannes P. C.
Galea, Dieter
Mroz, Anna
Laponogov, Ivan
Towers, Mark
Tonge, Robert
Mirnezami, Reza
Takats, Zoltan
Nicholson, Jeremy K.
Langridge, James I.
author_sort Veselkov, Kirill
collection PubMed
description Mass Spectrometry Imaging (MSI) holds significant promise in augmenting digital histopathologic analysis by generating highly robust big data about the metabolic, lipidomic and proteomic molecular content of the samples. In the process, a vast quantity of unrefined data, that can amount to several hundred gigabytes per tissue section, is produced. Managing, analysing and interpreting this data is a significant challenge and represents a major barrier to the translational application of MSI. Existing data analysis solutions for MSI rely on a set of heterogeneous bioinformatics packages that are not scalable for the reproducible processing of large-scale (hundreds to thousands) biological sample sets. Here, we present a computational platform (pyBASIS) capable of optimized and scalable processing of MSI data for improved information recovery and comparative analysis across tissue specimens using machine learning and related pattern recognition approaches. The proposed solution also provides a means of seamlessly integrating experimental laboratory data with downstream bioinformatics interpretation/analyses, resulting in a truly integrated system for translational MSI.
format Online
Article
Text
id pubmed-5840264
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-58402642018-03-13 BASIS: High-performance bioinformatics platform for processing of large-scale mass spectrometry imaging data in chemically augmented histology Veselkov, Kirill Sleeman, Jonathan Claude, Emmanuelle Vissers, Johannes P. C. Galea, Dieter Mroz, Anna Laponogov, Ivan Towers, Mark Tonge, Robert Mirnezami, Reza Takats, Zoltan Nicholson, Jeremy K. Langridge, James I. Sci Rep Article Mass Spectrometry Imaging (MSI) holds significant promise in augmenting digital histopathologic analysis by generating highly robust big data about the metabolic, lipidomic and proteomic molecular content of the samples. In the process, a vast quantity of unrefined data, that can amount to several hundred gigabytes per tissue section, is produced. Managing, analysing and interpreting this data is a significant challenge and represents a major barrier to the translational application of MSI. Existing data analysis solutions for MSI rely on a set of heterogeneous bioinformatics packages that are not scalable for the reproducible processing of large-scale (hundreds to thousands) biological sample sets. Here, we present a computational platform (pyBASIS) capable of optimized and scalable processing of MSI data for improved information recovery and comparative analysis across tissue specimens using machine learning and related pattern recognition approaches. The proposed solution also provides a means of seamlessly integrating experimental laboratory data with downstream bioinformatics interpretation/analyses, resulting in a truly integrated system for translational MSI. Nature Publishing Group UK 2018-03-06 /pmc/articles/PMC5840264/ /pubmed/29511258 http://dx.doi.org/10.1038/s41598-018-22499-z Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Veselkov, Kirill
Sleeman, Jonathan
Claude, Emmanuelle
Vissers, Johannes P. C.
Galea, Dieter
Mroz, Anna
Laponogov, Ivan
Towers, Mark
Tonge, Robert
Mirnezami, Reza
Takats, Zoltan
Nicholson, Jeremy K.
Langridge, James I.
BASIS: High-performance bioinformatics platform for processing of large-scale mass spectrometry imaging data in chemically augmented histology
title BASIS: High-performance bioinformatics platform for processing of large-scale mass spectrometry imaging data in chemically augmented histology
title_full BASIS: High-performance bioinformatics platform for processing of large-scale mass spectrometry imaging data in chemically augmented histology
title_fullStr BASIS: High-performance bioinformatics platform for processing of large-scale mass spectrometry imaging data in chemically augmented histology
title_full_unstemmed BASIS: High-performance bioinformatics platform for processing of large-scale mass spectrometry imaging data in chemically augmented histology
title_short BASIS: High-performance bioinformatics platform for processing of large-scale mass spectrometry imaging data in chemically augmented histology
title_sort basis: high-performance bioinformatics platform for processing of large-scale mass spectrometry imaging data in chemically augmented histology
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840264/
https://www.ncbi.nlm.nih.gov/pubmed/29511258
http://dx.doi.org/10.1038/s41598-018-22499-z
work_keys_str_mv AT veselkovkirill basishighperformancebioinformaticsplatformforprocessingoflargescalemassspectrometryimagingdatainchemicallyaugmentedhistology
AT sleemanjonathan basishighperformancebioinformaticsplatformforprocessingoflargescalemassspectrometryimagingdatainchemicallyaugmentedhistology
AT claudeemmanuelle basishighperformancebioinformaticsplatformforprocessingoflargescalemassspectrometryimagingdatainchemicallyaugmentedhistology
AT vissersjohannespc basishighperformancebioinformaticsplatformforprocessingoflargescalemassspectrometryimagingdatainchemicallyaugmentedhistology
AT galeadieter basishighperformancebioinformaticsplatformforprocessingoflargescalemassspectrometryimagingdatainchemicallyaugmentedhistology
AT mrozanna basishighperformancebioinformaticsplatformforprocessingoflargescalemassspectrometryimagingdatainchemicallyaugmentedhistology
AT laponogovivan basishighperformancebioinformaticsplatformforprocessingoflargescalemassspectrometryimagingdatainchemicallyaugmentedhistology
AT towersmark basishighperformancebioinformaticsplatformforprocessingoflargescalemassspectrometryimagingdatainchemicallyaugmentedhistology
AT tongerobert basishighperformancebioinformaticsplatformforprocessingoflargescalemassspectrometryimagingdatainchemicallyaugmentedhistology
AT mirnezamireza basishighperformancebioinformaticsplatformforprocessingoflargescalemassspectrometryimagingdatainchemicallyaugmentedhistology
AT takatszoltan basishighperformancebioinformaticsplatformforprocessingoflargescalemassspectrometryimagingdatainchemicallyaugmentedhistology
AT nicholsonjeremyk basishighperformancebioinformaticsplatformforprocessingoflargescalemassspectrometryimagingdatainchemicallyaugmentedhistology
AT langridgejamesi basishighperformancebioinformaticsplatformforprocessingoflargescalemassspectrometryimagingdatainchemicallyaugmentedhistology