Cargando…
Adaptive Morley element algorithms for the biharmonic eigenvalue problem
This paper is devoted to the adaptive Morley element algorithms for a biharmonic eigenvalue problem in [Formula: see text] ([Formula: see text] ). We combine the Morley element method with the shifted-inverse iteration including Rayleigh quotient iteration and the inverse iteration with fixed shift...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840272/ https://www.ncbi.nlm.nih.gov/pubmed/29540974 http://dx.doi.org/10.1186/s13660-018-1643-9 |
_version_ | 1783304544736772096 |
---|---|
author | Li, Hao Yang, Yidu |
author_facet | Li, Hao Yang, Yidu |
author_sort | Li, Hao |
collection | PubMed |
description | This paper is devoted to the adaptive Morley element algorithms for a biharmonic eigenvalue problem in [Formula: see text] ([Formula: see text] ). We combine the Morley element method with the shifted-inverse iteration including Rayleigh quotient iteration and the inverse iteration with fixed shift to propose multigrid discretization schemes in an adaptive fashion. We establish an inequality on Rayleigh quotient and use it to prove the efficiency of the adaptive algorithms. Numerical experiments show that these algorithms are efficient and can get the optimal convergence rate. |
format | Online Article Text |
id | pubmed-5840272 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-58402722018-03-12 Adaptive Morley element algorithms for the biharmonic eigenvalue problem Li, Hao Yang, Yidu J Inequal Appl Research This paper is devoted to the adaptive Morley element algorithms for a biharmonic eigenvalue problem in [Formula: see text] ([Formula: see text] ). We combine the Morley element method with the shifted-inverse iteration including Rayleigh quotient iteration and the inverse iteration with fixed shift to propose multigrid discretization schemes in an adaptive fashion. We establish an inequality on Rayleigh quotient and use it to prove the efficiency of the adaptive algorithms. Numerical experiments show that these algorithms are efficient and can get the optimal convergence rate. Springer International Publishing 2018-03-06 2018 /pmc/articles/PMC5840272/ /pubmed/29540974 http://dx.doi.org/10.1186/s13660-018-1643-9 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Li, Hao Yang, Yidu Adaptive Morley element algorithms for the biharmonic eigenvalue problem |
title | Adaptive Morley element algorithms for the biharmonic eigenvalue problem |
title_full | Adaptive Morley element algorithms for the biharmonic eigenvalue problem |
title_fullStr | Adaptive Morley element algorithms for the biharmonic eigenvalue problem |
title_full_unstemmed | Adaptive Morley element algorithms for the biharmonic eigenvalue problem |
title_short | Adaptive Morley element algorithms for the biharmonic eigenvalue problem |
title_sort | adaptive morley element algorithms for the biharmonic eigenvalue problem |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840272/ https://www.ncbi.nlm.nih.gov/pubmed/29540974 http://dx.doi.org/10.1186/s13660-018-1643-9 |
work_keys_str_mv | AT lihao adaptivemorleyelementalgorithmsforthebiharmoniceigenvalueproblem AT yangyidu adaptivemorleyelementalgorithmsforthebiharmoniceigenvalueproblem |