Cargando…

Adaptive Morley element algorithms for the biharmonic eigenvalue problem

This paper is devoted to the adaptive Morley element algorithms for a biharmonic eigenvalue problem in [Formula: see text] ([Formula: see text] ). We combine the Morley element method with the shifted-inverse iteration including Rayleigh quotient iteration and the inverse iteration with fixed shift...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Hao, Yang, Yidu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840272/
https://www.ncbi.nlm.nih.gov/pubmed/29540974
http://dx.doi.org/10.1186/s13660-018-1643-9
_version_ 1783304544736772096
author Li, Hao
Yang, Yidu
author_facet Li, Hao
Yang, Yidu
author_sort Li, Hao
collection PubMed
description This paper is devoted to the adaptive Morley element algorithms for a biharmonic eigenvalue problem in [Formula: see text] ([Formula: see text] ). We combine the Morley element method with the shifted-inverse iteration including Rayleigh quotient iteration and the inverse iteration with fixed shift to propose multigrid discretization schemes in an adaptive fashion. We establish an inequality on Rayleigh quotient and use it to prove the efficiency of the adaptive algorithms. Numerical experiments show that these algorithms are efficient and can get the optimal convergence rate.
format Online
Article
Text
id pubmed-5840272
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-58402722018-03-12 Adaptive Morley element algorithms for the biharmonic eigenvalue problem Li, Hao Yang, Yidu J Inequal Appl Research This paper is devoted to the adaptive Morley element algorithms for a biharmonic eigenvalue problem in [Formula: see text] ([Formula: see text] ). We combine the Morley element method with the shifted-inverse iteration including Rayleigh quotient iteration and the inverse iteration with fixed shift to propose multigrid discretization schemes in an adaptive fashion. We establish an inequality on Rayleigh quotient and use it to prove the efficiency of the adaptive algorithms. Numerical experiments show that these algorithms are efficient and can get the optimal convergence rate. Springer International Publishing 2018-03-06 2018 /pmc/articles/PMC5840272/ /pubmed/29540974 http://dx.doi.org/10.1186/s13660-018-1643-9 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research
Li, Hao
Yang, Yidu
Adaptive Morley element algorithms for the biharmonic eigenvalue problem
title Adaptive Morley element algorithms for the biharmonic eigenvalue problem
title_full Adaptive Morley element algorithms for the biharmonic eigenvalue problem
title_fullStr Adaptive Morley element algorithms for the biharmonic eigenvalue problem
title_full_unstemmed Adaptive Morley element algorithms for the biharmonic eigenvalue problem
title_short Adaptive Morley element algorithms for the biharmonic eigenvalue problem
title_sort adaptive morley element algorithms for the biharmonic eigenvalue problem
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840272/
https://www.ncbi.nlm.nih.gov/pubmed/29540974
http://dx.doi.org/10.1186/s13660-018-1643-9
work_keys_str_mv AT lihao adaptivemorleyelementalgorithmsforthebiharmoniceigenvalueproblem
AT yangyidu adaptivemorleyelementalgorithmsforthebiharmoniceigenvalueproblem