Cargando…

Direct observation of orbital hybridisation in a cuprate superconductor

The minimal ingredients to explain the essential physics of layered copper-oxide (cuprates) materials remains heavily debated. Effective low-energy single-band models of the copper–oxygen orbitals are widely used because there exists no strong experimental evidence supporting multi-band structures....

Descripción completa

Detalles Bibliográficos
Autores principales: Matt, C. E., Sutter, D., Cook, A. M., Sassa, Y., Månsson, M., Tjernberg, O., Das, L., Horio, M., Destraz, D., Fatuzzo, C. G., Hauser, K., Shi, M., Kobayashi, M., Strocov, V. N., Schmitt, T., Dudin, P., Hoesch, M., Pyon, S., Takayama, T., Takagi, H., Lipscombe, O. J., Hayden, S. M., Kurosawa, T., Momono, N., Oda, M., Neupert, T., Chang, J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840306/
https://www.ncbi.nlm.nih.gov/pubmed/29511188
http://dx.doi.org/10.1038/s41467-018-03266-0
Descripción
Sumario:The minimal ingredients to explain the essential physics of layered copper-oxide (cuprates) materials remains heavily debated. Effective low-energy single-band models of the copper–oxygen orbitals are widely used because there exists no strong experimental evidence supporting multi-band structures. Here, we report angle-resolved photoelectron spectroscopy experiments on La-based cuprates that provide direct observation of a two-band structure. This electronic structure, qualitatively consistent with density functional theory, is parametrised by a two-orbital ([Formula: see text] and [Formula: see text] ) tight-binding model. We quantify the orbital hybridisation which provides an explanation for the Fermi surface topology and the proximity of the van-Hove singularity to the Fermi level. Our analysis leads to a unification of electronic hopping parameters for single-layer cuprates and we conclude that hybridisation, restraining d-wave pairing, is an important optimisation element for superconductivity.