Cargando…
Self-Consistent Scheme for Spike-Train Power Spectra in Heterogeneous Sparse Networks
Recurrent networks of spiking neurons can be in an asynchronous state characterized by low or absent cross-correlations and spike statistics which resemble those of cortical neurons. Although spatial correlations are negligible in this state, neurons can show pronounced temporal correlations in thei...
Autores principales: | Pena, Rodrigo F. O., Vellmer, Sebastian, Bernardi, Davide, Roque, Antonio C., Lindner, Benjamin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840464/ https://www.ncbi.nlm.nih.gov/pubmed/29551968 http://dx.doi.org/10.3389/fncom.2018.00009 |
Ejemplares similares
-
Self-consistent determination of the spike-train power spectrum in a neural network with sparse connectivity
por: Dummer, Benjamin, et al.
Publicado: (2014) -
Latency correction in sparse neuronal spike trains
por: Kreuz, Thomas, et al.
Publicado: (2022) -
Arbitrarily Sparse Spectra for Self-Affine Spectral Measures
por: An, L.-X., et al.
Publicado: (2023) -
On efficient sparse spike coding schemes for learning natural scenes in the primary visual cortex
por: Perrinet, Laurent
Publicado: (2007) -
Sparse Computation in Adaptive Spiking Neural Networks
por: Zambrano, Davide, et al.
Publicado: (2019)