Cargando…

Advances in understanding the molecular basis of skin fragility

Skin fragility refers to a large group of conditions in which the ability of the skin to provide protection against trivial mechanical trauma is diminished, resulting in the formation of blisters, erosions, wounds, or scars. Acquired and physiological skin fragility is common; genetic disorders are...

Descripción completa

Detalles Bibliográficos
Autor principal: Has, Cristina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000 Research Limited 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840619/
https://www.ncbi.nlm.nih.gov/pubmed/29568501
http://dx.doi.org/10.12688/f1000research.12658.1
Descripción
Sumario:Skin fragility refers to a large group of conditions in which the ability of the skin to provide protection against trivial mechanical trauma is diminished, resulting in the formation of blisters, erosions, wounds, or scars. Acquired and physiological skin fragility is common; genetic disorders are rare but give insight into the molecular mechanisms ensuring skin stability. The paradigm is represented by inherited epidermolysis bullosa. This review is focused on recent advances in understanding the molecular basis of genetic skin fragility, including emerging concepts, controversies, unanswered questions, and opinions of the author. In spite of the advanced knowledge on the genetic causes of skin fragility, the molecular pathology is still expanding. Open questions in understanding the molecular basis of genetic skin fragility are the following: what are the causes of phenotypes which remain genetically unsolved, and what are the molecular modifiers which might explain phenotypic differences among individuals with similar mutations?  New mutational mechanisms and new genes have recently been discovered and are briefly described here. Comprehensive next-generation sequencing-based genetic testing improved mutation detection and facilitated the identification of the genetic basis of unclear and new phenotypes. Characterization of the biochemical and cell biological consequences of the genetic variants is challenging and laborious but may represent the basis for personalized therapeutic approaches. Molecular modifiers of skin fragility have been uncovered in particular animal and genetic models but not in larger cohorts of patients. This scientific progress is the basis for revisions of the epidermolysis bullosa classification and for innovative therapeutic approaches designed for this intractable condition.