Cargando…

MicroRNA-10a/b are regulators of myeloid differentiation and acute myeloid leukemia

MicroRNAs (miRs) have been demonstrated to perform important roles in normal hematopoiesis and leukemogenesis. Accumulating evidence suggests that miR-10a and miR-10b may behave as novel oncogenes or tumor suppressors in human cancer. The present study reported the function of the miR-10 family in m...

Descripción completa

Detalles Bibliográficos
Autores principales: Bi, Laixi, Sun, Lan, Jin, Zhenlin, Zhang, Shenghui, Shen, Zhijian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840650/
https://www.ncbi.nlm.nih.gov/pubmed/29552198
http://dx.doi.org/10.3892/ol.2018.8050
Descripción
Sumario:MicroRNAs (miRs) have been demonstrated to perform important roles in normal hematopoiesis and leukemogenesis. Accumulating evidence suggests that miR-10a and miR-10b may behave as novel oncogenes or tumor suppressors in human cancer. The present study reported the function of the miR-10 family in myeloid differentiation and acute myeloid leukemia (AML). The levels of miR-10a/b expression were increased in AML cases compared with normal controls, particularly in M1, M2 and M3 subtypes. The levels of miR-10a/b expression were also upregulated in patients with nucleophosmin-mutated AML and AML patients with t(8;21) and t(9;11), compared with the normal control. In addition, the role of miR-10a/b in regulating myeloid differentiation and leukemogenesis was investigated. The results indicated that miR-10a/b expression was able to promote the proliferation of human promyelocytic leukemia cells, while suppressing the granulocytic and monocytic differentiation of the leukemia cells. These findings suggested that abnormal high expression of miR-10a/b may result in unlimited proliferation of immature blood progenitors and repression of mature blood cell differentiation and maturation, thus leading to the occurrence of AML. miR-10a/b may be developed as novel therapeutic targets for the treatment of AML.