Cargando…
Iridium and Ruthenium Complexes of N-Heterocyclic Carbene- and Pyridinol-Derived Chelates as Catalysts for Aqueous Carbon Dioxide Hydrogenation and Formic Acid Dehydrogenation: The Role of the Alkali Metal
[Image: see text] Hydrogenation reactions can be used to store energy in chemical bonds, and if these reactions are reversible, that energy can be released on demand. Some of the most effective transition metal catalysts for CO(2) hydrogenation have featured pyridin-2-ol-based ligands (e.g., 6,6′-di...
Autores principales: | Siek, Sopheavy, Burks, Dalton B., Gerlach, Deidra L., Liang, Guangchao, Tesh, Jamie M., Thompson, Courtney R., Qu, Fengrui, Shankwitz, Jennifer E., Vasquez, Robert M., Chambers, Nicole, Szulczewski, Gregory J., Grotjahn, Douglas B., Webster, Charles Edwin, Papish, Elizabeth T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840859/ https://www.ncbi.nlm.nih.gov/pubmed/29540958 http://dx.doi.org/10.1021/acs.organomet.6b00806 |
Ejemplares similares
-
Efficient additive-free formic acid dehydrogenation with a NNN–ruthenium complex
por: Knörr, Pascal, et al.
Publicado: (2023) -
A genuine germylene PGeP pincer ligand for formic acid dehydrogenation with iridium
por: Fernández-Buenestado, Marta, et al.
Publicado: (2023) -
Impact of Green Cosolvents on the Catalytic Dehydrogenation
of Formic Acid: The Case of Iridium Catalysts Bearing NHC-phosphane
Ligands
por: Luque-Gómez, Ana, et al.
Publicado: (2021) -
Single-Site Iridium Picolinamide Catalyst Immobilized
onto Silica for the Hydrogenation of CO(2) and the Dehydrogenation
of Formic Acid
por: Tensi, Leonardo, et al.
Publicado: (2022) -
Cobalt‐Catalyzed Aqueous Dehydrogenation of Formic Acid
por: Zhou, Wei, et al.
Publicado: (2019)