Cargando…
Improving Classification of Cancer and Mining Biomarkers from Gene Expression Profiles Using Hybrid Optimization Algorithms and Fuzzy Support Vector Machine
BACKGROUND: Gene expression data are characteristically high dimensional with a small sample size in contrast to the feature size and variability inherent in biological processes that contribute to difficulties in analysis. Selection of highly discriminative features decreases the computational cost...
Autores principales: | Moteghaed, Niloofar Yousefi, Maghooli, Keivan, Garshasbi, Masoud |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840891/ https://www.ncbi.nlm.nih.gov/pubmed/29535919 |
Ejemplares similares
-
Biomarker Discovery Based on Hybrid Optimization Algorithm and Artificial Neural Networks on Microarray Data for Cancer Classification
por: Moteghaed, Niloofar Yousefi, et al.
Publicado: (2015) -
Biomarker Discovery by Imperialist Competitive Algorithm in Mass Spectrometry Data for Ovarian Cancer Prediction
por: Pirhadi, Shiva, et al.
Publicado: (2021) -
A Hybrid EEG-based Emotion Recognition Approach Using Wavelet Convolutional Neural Networks and Support Vector Machine
por: Bagherzadeh, Sara, et al.
Publicado: (2023) -
Biomedical Image Denoising Based on Hybrid Optimization Algorithm and Sequential Filters
por: N., Yousefi Moteghaed, et al.
Publicado: (2020) -
Deep Learning-Based Imbalanced Classification With Fuzzy Support Vector Machine
por: Wang, Ke-Fan, et al.
Publicado: (2022)