Cargando…
Markerless Respiratory Tumor Motion Prediction Using an Adaptive Neuro-fuzzy Approach
BACKGROUND: Accurate delivery of the prescribed dose to moving lung tumors is a key challenge in radiation therapy. Tumor tracking involves real-time specifying the target and correcting the geometry to compensate for the respiratory motion, that's why tracking the tumor requires caution. This...
Autores principales: | Rostampour, Nima, Jabbari, Keyvan, Esmaeili, Mahdad, Mohammadi, Mohammad, Nabavi, Shahabedin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840893/ https://www.ncbi.nlm.nih.gov/pubmed/29535921 |
Ejemplares similares
-
Dynamic MLC Tracking Using 4D Lung Tumor Motion Modelling and EPID Feedback
por: N., Rostampour, et al.
Publicado: (2019) -
Respiratory Motion Prediction Using Deep Convolutional Long Short-Term Memory Network
por: Nabavi, Shahabedin, et al.
Publicado: (2020) -
Examination of 2D frontal and sagittal markerless motion capture: Implications for markerless applications
por: Wade, Logan, et al.
Publicado: (2023) -
Prediction of Conductivity by Adaptive Neuro-Fuzzy Model
por: Akbarzadeh, S., et al.
Publicado: (2014) -
Assessment of the Performances of Adaptive Neuro-Fuzzy Inference
System and Two Statistical Methods for Diagnosing Coronary Artery Disease
por: Rajabzadeh, Zahra, et al.
Publicado: (2023)