Cargando…
Identification of dysregulated modules based on network entropy in type 1 diabetes
Type 1 diabetes is a prevalent autoimmune disease of which the underlying mechanisms remain to be elucidated. The aim of the study was to identify dysregulated modules of type 1 diabetes. After microarray data were preprocessed, 20,545 genes were obtained. By integrating gene expression data and pro...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841047/ https://www.ncbi.nlm.nih.gov/pubmed/29545837 http://dx.doi.org/10.3892/etm.2018.5803 |
Sumario: | Type 1 diabetes is a prevalent autoimmune disease of which the underlying mechanisms remain to be elucidated. The aim of the study was to identify dysregulated modules of type 1 diabetes. After microarray data were preprocessed, 20,545 genes were obtained. By integrating gene expression data and protein-protein interactions (PPI) data, 48,778 new networks were obtained, including 7,953 genes. After simplifying networks, we obtained 24 target networks. By ranking networks with P-values, two modules with P<0.05 were identified, including the genes, CCNB1, CDC45, GINS2, NDC80, FBXO5, NCAPG and DLGAP5. Module 2 was part of module 1. The identified modules and genes may provide new insights into the underlying biological mechanisms that drive the progression of type 1 diabetes. |
---|