Cargando…

GLP-1 and Insulin Recruit Muscle Microvasculature and Dilate Conduit Artery Individually But Not Additively in Healthy Humans

CONTEXT: Glucagon-like peptide-1 (GLP-1) and insulin increase muscle microvascular perfusion, thereby increasing tissue endothelial surface area and nutrient delivery. OBJECTIVE: To examine whether GLP-1 and insulin act additively on skeletal and cardiac microvasculature and conduit artery. DESIGN:...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Alvin W.K., Subaran, Sharmila C., Sauder, Matthew A., Chai, Weidong, Jahn, Linda A., Fowler, Dale E., Patrie, James T., Aylor, Kevin W., Basu, Ananda, Liu, Zhenqi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Endocrine Society 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841186/
https://www.ncbi.nlm.nih.gov/pubmed/29568814
http://dx.doi.org/10.1210/js.2017-00446
Descripción
Sumario:CONTEXT: Glucagon-like peptide-1 (GLP-1) and insulin increase muscle microvascular perfusion, thereby increasing tissue endothelial surface area and nutrient delivery. OBJECTIVE: To examine whether GLP-1 and insulin act additively on skeletal and cardiac microvasculature and conduit artery. DESIGN: Healthy adults underwent three study protocols in random order. SETTING: Clinical Research Unit at the University of Virginia. METHODS: Overnight-fasted participants received an intravenous infusion of GLP-1 (1.2 pmol/kg/min) or normal saline for 150 minutes with or without a 2-hour euglycemic insulin clamp (1 mU/kg/min) superimposed from 30 minutes onward. Skeletal and cardiac muscle microvascular blood volume (MBV), flow velocity, and flow; brachial artery diameter, flow velocity, and blood flow; and pulse wave velocity (PWV) were measured. RESULTS: GLP-1 significantly increased skeletal and cardiac muscle MBV and microvascular blood flow (MBF) after 30 minutes; these remained elevated at 150 minutes. Insulin also increased skeletal and cardiac muscle MBV and MBF. Addition of insulin to GLP-1 did not further increase skeletal and cardiac muscle MBV and MBF. GLP-1 and insulin increased brachial artery diameter and blood flow, but this effect was not additive. Neither GLP-1, insulin, nor GLP-1 and insulin altered PWV. Combined GLP-1 and insulin infusion did not result in higher whole-body glucose disposal. CONCLUSION: GLP-1 and insulin at physiological concentrations acutely increase skeletal and cardiac muscle microvascular perfusion and dilate conduit artery in healthy adults; these effects are not additive. Thus, GLP-1 and insulin may regulate skeletal and cardiac muscle endothelial surface area and nutrient delivery under physiological conditions.