Cargando…

Effect of antibiotics and NSAIDs on cyclooxygenase-2 in the enamel mineralization

The objective of this study was to determine whether the use of the most commonly prescribed antibiotics and non-steroidal anti-inflammatory drugs in childhood could disturb enamel mineralization. Forty-two Swiss mice were divided into seven groups: controls; amoxicillin; amoxicillin/clavulanate; er...

Descripción completa

Detalles Bibliográficos
Autores principales: Serna Muñoz, Clara, Pérez Silva, Amparo, Solano, Francisco, Castells, María Teresa, Vicente, Ascensión, Ortiz Ruiz, Antonio José
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841276/
https://www.ncbi.nlm.nih.gov/pubmed/29515175
http://dx.doi.org/10.1038/s41598-018-22607-z
Descripción
Sumario:The objective of this study was to determine whether the use of the most commonly prescribed antibiotics and non-steroidal anti-inflammatory drugs in childhood could disturb enamel mineralization. Forty-two Swiss mice were divided into seven groups: controls; amoxicillin; amoxicillin/clavulanate; erythromycin; acetaminophen; ibuprofen and celecoxib, to inhibit cyclooxygenase 2 (COX2). SEM-EDX analysis was conducted on all cusps of the third molars. Calcium (Ca), phosphorus (P), aluminum, potassium, sodium, magnesium and chlorine were quantified. The stoichiometric Ca/P molar ratios were calculated. Immunohistochemical quantification of COX2 in incisors was carried out by image analysis using COX2-specific immunostaining. Groups treated with antibiotics showed no significant differences in the content of the chemical elements. Only acetaminophen and celecoxib showed a significant decrease in Ca and P compared with the control samples. Ca/P ratios showed no difference. Groups treated with amoxicillin, amoxicillin/clavulanate, erythromycin and acetaminophen showed significantly lower amounts of immunoreactive COX2 at the enamel organ maturation stage of the mouse incisors. Our results suggest that COX2 is involved in the maturation stage of the enamel organ and that its inhibition would appear to alter amelogenesis, producing hypomineralization.