Cargando…

Evolution of joint cooperation under phenotypic variations

Effects of phenotypic variation on the species-environment systems and the evolution of cooperation under prescribed phenotypic diversity have been well addressed respectively. Interspecies interactions in the context of evolvable phenotypic diversity remain largely unconsidered. We address the evol...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Te, Wang, Long, Lee, Joseph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841363/
https://www.ncbi.nlm.nih.gov/pubmed/29515138
http://dx.doi.org/10.1038/s41598-018-22477-5
Descripción
Sumario:Effects of phenotypic variation on the species-environment systems and the evolution of cooperation under prescribed phenotypic diversity have been well addressed respectively. Interspecies interactions in the context of evolvable phenotypic diversity remain largely unconsidered. We address the evolutionary dynamics by considering evolvable phenotypic variations under group interactions. Each individual carries a capacitor of phenotypes and pays a cost proportional to its volume. A random phenotype from the capacitor is expressed and the population is thus divided into subpopulations. Group interactions happen in each of these subpopulations, respectively. Competition is global. Results show that phenotypic diversity coevolves with cooperation under a wide range of conditions and that tradeoff between expanding capacitor and rising cost leads to an optimal level of phenotypic diversity best promoting cooperation. We also find that evolved high levels of phenotypic diversity can occasionally collapse due to the invasion of defector mutants, suggesting that cooperation and phenotypic diversity can mutually reinforce each other.