Cargando…
Dependency-based Siamese long short-term memory network for learning sentence representations
Textual representations play an important role in the field of natural language processing (NLP). The efficiency of NLP tasks, such as text comprehension and information extraction, can be significantly improved with proper textual representations. As neural networks are gradually applied to learn t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841810/ https://www.ncbi.nlm.nih.gov/pubmed/29513748 http://dx.doi.org/10.1371/journal.pone.0193919 |
_version_ | 1783304802838511616 |
---|---|
author | Zhu, Wenhao Yao, Tengjun Ni, Jianyue Wei, Baogang Lu, Zhiguo |
author_facet | Zhu, Wenhao Yao, Tengjun Ni, Jianyue Wei, Baogang Lu, Zhiguo |
author_sort | Zhu, Wenhao |
collection | PubMed |
description | Textual representations play an important role in the field of natural language processing (NLP). The efficiency of NLP tasks, such as text comprehension and information extraction, can be significantly improved with proper textual representations. As neural networks are gradually applied to learn the representation of words and phrases, fairly efficient models of learning short text representations have been developed, such as the continuous bag of words (CBOW) and skip-gram models, and they have been extensively employed in a variety of NLP tasks. Because of the complex structure generated by the longer text lengths, such as sentences, algorithms appropriate for learning short textual representations are not applicable for learning long textual representations. One method of learning long textual representations is the Long Short-Term Memory (LSTM) network, which is suitable for processing sequences. However, the standard LSTM does not adequately address the primary sentence structure (subject, predicate and object), which is an important factor for producing appropriate sentence representations. To resolve this issue, this paper proposes the dependency-based LSTM model (D-LSTM). The D-LSTM divides a sentence representation into two parts: a basic component and a supporting component. The D-LSTM uses a pre-trained dependency parser to obtain the primary sentence information and generate supporting components, and it also uses a standard LSTM model to generate the basic sentence components. A weight factor that can adjust the ratio of the basic and supporting components in a sentence is introduced to generate the sentence representation. Compared with the representation learned by the standard LSTM, the sentence representation learned by the D-LSTM contains a greater amount of useful information. The experimental results show that the D-LSTM is superior to the standard LSTM for sentences involving compositional knowledge (SICK) data. |
format | Online Article Text |
id | pubmed-5841810 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-58418102018-03-23 Dependency-based Siamese long short-term memory network for learning sentence representations Zhu, Wenhao Yao, Tengjun Ni, Jianyue Wei, Baogang Lu, Zhiguo PLoS One Research Article Textual representations play an important role in the field of natural language processing (NLP). The efficiency of NLP tasks, such as text comprehension and information extraction, can be significantly improved with proper textual representations. As neural networks are gradually applied to learn the representation of words and phrases, fairly efficient models of learning short text representations have been developed, such as the continuous bag of words (CBOW) and skip-gram models, and they have been extensively employed in a variety of NLP tasks. Because of the complex structure generated by the longer text lengths, such as sentences, algorithms appropriate for learning short textual representations are not applicable for learning long textual representations. One method of learning long textual representations is the Long Short-Term Memory (LSTM) network, which is suitable for processing sequences. However, the standard LSTM does not adequately address the primary sentence structure (subject, predicate and object), which is an important factor for producing appropriate sentence representations. To resolve this issue, this paper proposes the dependency-based LSTM model (D-LSTM). The D-LSTM divides a sentence representation into two parts: a basic component and a supporting component. The D-LSTM uses a pre-trained dependency parser to obtain the primary sentence information and generate supporting components, and it also uses a standard LSTM model to generate the basic sentence components. A weight factor that can adjust the ratio of the basic and supporting components in a sentence is introduced to generate the sentence representation. Compared with the representation learned by the standard LSTM, the sentence representation learned by the D-LSTM contains a greater amount of useful information. The experimental results show that the D-LSTM is superior to the standard LSTM for sentences involving compositional knowledge (SICK) data. Public Library of Science 2018-03-07 /pmc/articles/PMC5841810/ /pubmed/29513748 http://dx.doi.org/10.1371/journal.pone.0193919 Text en © 2018 Zhu et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Zhu, Wenhao Yao, Tengjun Ni, Jianyue Wei, Baogang Lu, Zhiguo Dependency-based Siamese long short-term memory network for learning sentence representations |
title | Dependency-based Siamese long short-term memory network for learning sentence representations |
title_full | Dependency-based Siamese long short-term memory network for learning sentence representations |
title_fullStr | Dependency-based Siamese long short-term memory network for learning sentence representations |
title_full_unstemmed | Dependency-based Siamese long short-term memory network for learning sentence representations |
title_short | Dependency-based Siamese long short-term memory network for learning sentence representations |
title_sort | dependency-based siamese long short-term memory network for learning sentence representations |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841810/ https://www.ncbi.nlm.nih.gov/pubmed/29513748 http://dx.doi.org/10.1371/journal.pone.0193919 |
work_keys_str_mv | AT zhuwenhao dependencybasedsiameselongshorttermmemorynetworkforlearningsentencerepresentations AT yaotengjun dependencybasedsiameselongshorttermmemorynetworkforlearningsentencerepresentations AT nijianyue dependencybasedsiameselongshorttermmemorynetworkforlearningsentencerepresentations AT weibaogang dependencybasedsiameselongshorttermmemorynetworkforlearningsentencerepresentations AT luzhiguo dependencybasedsiameselongshorttermmemorynetworkforlearningsentencerepresentations |