Cargando…
Differential effects of short chain fatty acids on endothelial Nlrp3 inflammasome activation and neointima formation: Antioxidant action of butyrate
Short chain fatty acids (SCFAs), a family of gut microbial metabolites, have been reported to promote preservation of endothelial function and thereby exert anti-atherosclerotic action. However, the precise mechanism mediating this protective action of SCFAs remains unknown. The present study invest...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842312/ https://www.ncbi.nlm.nih.gov/pubmed/29475132 http://dx.doi.org/10.1016/j.redox.2018.02.007 |
_version_ | 1783304875738660864 |
---|---|
author | Yuan, Xinxu Wang, Lei Bhat, Owais M. Lohner, Hannah Li, Pin-Lan |
author_facet | Yuan, Xinxu Wang, Lei Bhat, Owais M. Lohner, Hannah Li, Pin-Lan |
author_sort | Yuan, Xinxu |
collection | PubMed |
description | Short chain fatty acids (SCFAs), a family of gut microbial metabolites, have been reported to promote preservation of endothelial function and thereby exert anti-atherosclerotic action. However, the precise mechanism mediating this protective action of SCFAs remains unknown. The present study investigated the effects of SCFAs (acetate, propionate and butyrate) on the activation of Nod-like receptor pyrin domain 3 (Nlrp3) inflammasome in endothelial cells (ECs) and associated carotid neointima formation. Using a partial ligated carotid artery (PLCA) mouse model fed with the Western diet (WD), we found that butyrate significantly decreased Nlrp3 inflammasome formation and activation in the carotid arterial wall of wild type mice (Asc(+/+)), which was comparable to the effect of gene deletion of the adaptor protein apoptosis-associated speck-like protein gene (Asc(-/-)). Nevertheless, both acetate and propionate markedly enhanced the formation and activation of the Nlrp3 inflammasome as well as carotid neointima formation in the carotid arteries with PLCA in Asc(+/+), but not Asc(-/-) mice. In cultured ECs (EOMA cells), butyrate was found to significantly decrease the formation and activation of Nlrp3 inflammasomes induced by 7-ketocholesterol (7-Ket) or cholesterol crystals (CHC), while acetate did not inhibit Nlrp3 inflammasome activation induced by either 7-Ket or CHC, but itself even activated Nlrp3 inflammsomes. Mechanistically, the inhibitory action of butyrate on the Nlrp3 inflammasome was attributed to a blockade of lipid raft redox signaling platforms to produce O2(•-) upon 7-Ket or CHC stimulations. These results indicate that SCFAs have differential effects on endothelial Nlrp3 inflammasome activation and associated carotid neointima formation. |
format | Online Article Text |
id | pubmed-5842312 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-58423122018-03-09 Differential effects of short chain fatty acids on endothelial Nlrp3 inflammasome activation and neointima formation: Antioxidant action of butyrate Yuan, Xinxu Wang, Lei Bhat, Owais M. Lohner, Hannah Li, Pin-Lan Redox Biol Research Paper Short chain fatty acids (SCFAs), a family of gut microbial metabolites, have been reported to promote preservation of endothelial function and thereby exert anti-atherosclerotic action. However, the precise mechanism mediating this protective action of SCFAs remains unknown. The present study investigated the effects of SCFAs (acetate, propionate and butyrate) on the activation of Nod-like receptor pyrin domain 3 (Nlrp3) inflammasome in endothelial cells (ECs) and associated carotid neointima formation. Using a partial ligated carotid artery (PLCA) mouse model fed with the Western diet (WD), we found that butyrate significantly decreased Nlrp3 inflammasome formation and activation in the carotid arterial wall of wild type mice (Asc(+/+)), which was comparable to the effect of gene deletion of the adaptor protein apoptosis-associated speck-like protein gene (Asc(-/-)). Nevertheless, both acetate and propionate markedly enhanced the formation and activation of the Nlrp3 inflammasome as well as carotid neointima formation in the carotid arteries with PLCA in Asc(+/+), but not Asc(-/-) mice. In cultured ECs (EOMA cells), butyrate was found to significantly decrease the formation and activation of Nlrp3 inflammasomes induced by 7-ketocholesterol (7-Ket) or cholesterol crystals (CHC), while acetate did not inhibit Nlrp3 inflammasome activation induced by either 7-Ket or CHC, but itself even activated Nlrp3 inflammsomes. Mechanistically, the inhibitory action of butyrate on the Nlrp3 inflammasome was attributed to a blockade of lipid raft redox signaling platforms to produce O2(•-) upon 7-Ket or CHC stimulations. These results indicate that SCFAs have differential effects on endothelial Nlrp3 inflammasome activation and associated carotid neointima formation. Elsevier 2018-02-13 /pmc/articles/PMC5842312/ /pubmed/29475132 http://dx.doi.org/10.1016/j.redox.2018.02.007 Text en http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Yuan, Xinxu Wang, Lei Bhat, Owais M. Lohner, Hannah Li, Pin-Lan Differential effects of short chain fatty acids on endothelial Nlrp3 inflammasome activation and neointima formation: Antioxidant action of butyrate |
title | Differential effects of short chain fatty acids on endothelial Nlrp3 inflammasome activation and neointima formation: Antioxidant action of butyrate |
title_full | Differential effects of short chain fatty acids on endothelial Nlrp3 inflammasome activation and neointima formation: Antioxidant action of butyrate |
title_fullStr | Differential effects of short chain fatty acids on endothelial Nlrp3 inflammasome activation and neointima formation: Antioxidant action of butyrate |
title_full_unstemmed | Differential effects of short chain fatty acids on endothelial Nlrp3 inflammasome activation and neointima formation: Antioxidant action of butyrate |
title_short | Differential effects of short chain fatty acids on endothelial Nlrp3 inflammasome activation and neointima formation: Antioxidant action of butyrate |
title_sort | differential effects of short chain fatty acids on endothelial nlrp3 inflammasome activation and neointima formation: antioxidant action of butyrate |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842312/ https://www.ncbi.nlm.nih.gov/pubmed/29475132 http://dx.doi.org/10.1016/j.redox.2018.02.007 |
work_keys_str_mv | AT yuanxinxu differentialeffectsofshortchainfattyacidsonendothelialnlrp3inflammasomeactivationandneointimaformationantioxidantactionofbutyrate AT wanglei differentialeffectsofshortchainfattyacidsonendothelialnlrp3inflammasomeactivationandneointimaformationantioxidantactionofbutyrate AT bhatowaism differentialeffectsofshortchainfattyacidsonendothelialnlrp3inflammasomeactivationandneointimaformationantioxidantactionofbutyrate AT lohnerhannah differentialeffectsofshortchainfattyacidsonendothelialnlrp3inflammasomeactivationandneointimaformationantioxidantactionofbutyrate AT lipinlan differentialeffectsofshortchainfattyacidsonendothelialnlrp3inflammasomeactivationandneointimaformationantioxidantactionofbutyrate |