Cargando…

Effects of neonatal hyperoxia on the critical period of postnatal development of neurochemical expressions in brain stem respiratory‐related nuclei in the rat

We have identified a critical period of respiratory development in rats at postnatal days P12‐13, when inhibitory influence dominates and when the response to hypoxia is at its weakest. This critical period has significant implications for Sudden Infant Death Syndrome (SIDS), the cause of which rema...

Descripción completa

Detalles Bibliográficos
Autores principales: Mu, Lianwei, Xia, Dong Dong, Michalkiewicz, Teresa, Hodges, Matthew, Mouradian, Gary, Konduri, Girija G., Wong‐Riley, Margaret T. T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842315/
https://www.ncbi.nlm.nih.gov/pubmed/29516654
http://dx.doi.org/10.14814/phy2.13627
_version_ 1783304876445401088
author Mu, Lianwei
Xia, Dong Dong
Michalkiewicz, Teresa
Hodges, Matthew
Mouradian, Gary
Konduri, Girija G.
Wong‐Riley, Margaret T. T.
author_facet Mu, Lianwei
Xia, Dong Dong
Michalkiewicz, Teresa
Hodges, Matthew
Mouradian, Gary
Konduri, Girija G.
Wong‐Riley, Margaret T. T.
author_sort Mu, Lianwei
collection PubMed
description We have identified a critical period of respiratory development in rats at postnatal days P12‐13, when inhibitory influence dominates and when the response to hypoxia is at its weakest. This critical period has significant implications for Sudden Infant Death Syndrome (SIDS), the cause of which remains elusive. One of the known risk factors for SIDS is prematurity. A common intervention used in premature infants is hyperoxic therapy, which, if prolonged, can alter the ventilatory response to hypoxia and induce sustained inhibition of lung alveolar growth and pulmonary remodeling. The goal of this study was to test our hypothesis that neonatal hyperoxia from postnatal day (P) 0 to P10 in rat pups perturbs the critical period by altering the normal progression of neurochemical development in brain stem respiratory‐related nuclei. An in‐depth, semiquantitative immunohistochemical study was undertaken at P10 (immediately after hyperoxia and before the critical period), P12 (during the critical period), P14 (immediately after the critical period), and P17 (a week after the cessation of hyperoxia). In agreement with our previous findings, levels of cytochrome oxidase, brain‐derived neurotrophic factor (BDNF), TrkB (BDNF receptor), and several serotonergic proteins (5‐HT(1A) and (2A) receptors, 5‐HT synthesizing enzyme tryptophan hydroxylase [TPH], and serotonin transporter [SERT]) all fell in several brain stem respiratory‐related nuclei during the critical period (P12) in control animals. However, in hyperoxic animals, these neurochemicals exhibited a significant fall at P14 instead. Thus, neonatal hyperoxia delayed but did not eliminate the critical period of postnatal development in multiple brain stem respiratory‐related nuclei, with little effect on the nonrespiratory cuneate nucleus.
format Online
Article
Text
id pubmed-5842315
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-58423152018-03-14 Effects of neonatal hyperoxia on the critical period of postnatal development of neurochemical expressions in brain stem respiratory‐related nuclei in the rat Mu, Lianwei Xia, Dong Dong Michalkiewicz, Teresa Hodges, Matthew Mouradian, Gary Konduri, Girija G. Wong‐Riley, Margaret T. T. Physiol Rep Original Research We have identified a critical period of respiratory development in rats at postnatal days P12‐13, when inhibitory influence dominates and when the response to hypoxia is at its weakest. This critical period has significant implications for Sudden Infant Death Syndrome (SIDS), the cause of which remains elusive. One of the known risk factors for SIDS is prematurity. A common intervention used in premature infants is hyperoxic therapy, which, if prolonged, can alter the ventilatory response to hypoxia and induce sustained inhibition of lung alveolar growth and pulmonary remodeling. The goal of this study was to test our hypothesis that neonatal hyperoxia from postnatal day (P) 0 to P10 in rat pups perturbs the critical period by altering the normal progression of neurochemical development in brain stem respiratory‐related nuclei. An in‐depth, semiquantitative immunohistochemical study was undertaken at P10 (immediately after hyperoxia and before the critical period), P12 (during the critical period), P14 (immediately after the critical period), and P17 (a week after the cessation of hyperoxia). In agreement with our previous findings, levels of cytochrome oxidase, brain‐derived neurotrophic factor (BDNF), TrkB (BDNF receptor), and several serotonergic proteins (5‐HT(1A) and (2A) receptors, 5‐HT synthesizing enzyme tryptophan hydroxylase [TPH], and serotonin transporter [SERT]) all fell in several brain stem respiratory‐related nuclei during the critical period (P12) in control animals. However, in hyperoxic animals, these neurochemicals exhibited a significant fall at P14 instead. Thus, neonatal hyperoxia delayed but did not eliminate the critical period of postnatal development in multiple brain stem respiratory‐related nuclei, with little effect on the nonrespiratory cuneate nucleus. John Wiley and Sons Inc. 2018-03-08 /pmc/articles/PMC5842315/ /pubmed/29516654 http://dx.doi.org/10.14814/phy2.13627 Text en © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Research
Mu, Lianwei
Xia, Dong Dong
Michalkiewicz, Teresa
Hodges, Matthew
Mouradian, Gary
Konduri, Girija G.
Wong‐Riley, Margaret T. T.
Effects of neonatal hyperoxia on the critical period of postnatal development of neurochemical expressions in brain stem respiratory‐related nuclei in the rat
title Effects of neonatal hyperoxia on the critical period of postnatal development of neurochemical expressions in brain stem respiratory‐related nuclei in the rat
title_full Effects of neonatal hyperoxia on the critical period of postnatal development of neurochemical expressions in brain stem respiratory‐related nuclei in the rat
title_fullStr Effects of neonatal hyperoxia on the critical period of postnatal development of neurochemical expressions in brain stem respiratory‐related nuclei in the rat
title_full_unstemmed Effects of neonatal hyperoxia on the critical period of postnatal development of neurochemical expressions in brain stem respiratory‐related nuclei in the rat
title_short Effects of neonatal hyperoxia on the critical period of postnatal development of neurochemical expressions in brain stem respiratory‐related nuclei in the rat
title_sort effects of neonatal hyperoxia on the critical period of postnatal development of neurochemical expressions in brain stem respiratory‐related nuclei in the rat
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842315/
https://www.ncbi.nlm.nih.gov/pubmed/29516654
http://dx.doi.org/10.14814/phy2.13627
work_keys_str_mv AT mulianwei effectsofneonatalhyperoxiaonthecriticalperiodofpostnataldevelopmentofneurochemicalexpressionsinbrainstemrespiratoryrelatednucleiintherat
AT xiadongdong effectsofneonatalhyperoxiaonthecriticalperiodofpostnataldevelopmentofneurochemicalexpressionsinbrainstemrespiratoryrelatednucleiintherat
AT michalkiewiczteresa effectsofneonatalhyperoxiaonthecriticalperiodofpostnataldevelopmentofneurochemicalexpressionsinbrainstemrespiratoryrelatednucleiintherat
AT hodgesmatthew effectsofneonatalhyperoxiaonthecriticalperiodofpostnataldevelopmentofneurochemicalexpressionsinbrainstemrespiratoryrelatednucleiintherat
AT mouradiangary effectsofneonatalhyperoxiaonthecriticalperiodofpostnataldevelopmentofneurochemicalexpressionsinbrainstemrespiratoryrelatednucleiintherat
AT kondurigirijag effectsofneonatalhyperoxiaonthecriticalperiodofpostnataldevelopmentofneurochemicalexpressionsinbrainstemrespiratoryrelatednucleiintherat
AT wongrileymargarettt effectsofneonatalhyperoxiaonthecriticalperiodofpostnataldevelopmentofneurochemicalexpressionsinbrainstemrespiratoryrelatednucleiintherat