Cargando…

MRI features predict p53 status in lower-grade gliomas via a machine-learning approach

BACKGROUND: P53 mutation status is a pivotal biomarker for gliomas. Here, we developed a machine-learning model to predict p53 status in lower-grade gliomas based on radiomic features extracted from conventional magnetic resonance (MR) images. METHODS: Preoperative MR images were retrospectively obt...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yiming, Qian, Zenghui, Xu, Kaibin, Wang, Kai, Fan, Xing, Li, Shaowu, Jiang, Tao, Liu, Xing, Wang, Yinyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842645/
https://www.ncbi.nlm.nih.gov/pubmed/29527478
http://dx.doi.org/10.1016/j.nicl.2017.10.030
_version_ 1783304942482620416
author Li, Yiming
Qian, Zenghui
Xu, Kaibin
Wang, Kai
Fan, Xing
Li, Shaowu
Jiang, Tao
Liu, Xing
Wang, Yinyan
author_facet Li, Yiming
Qian, Zenghui
Xu, Kaibin
Wang, Kai
Fan, Xing
Li, Shaowu
Jiang, Tao
Liu, Xing
Wang, Yinyan
author_sort Li, Yiming
collection PubMed
description BACKGROUND: P53 mutation status is a pivotal biomarker for gliomas. Here, we developed a machine-learning model to predict p53 status in lower-grade gliomas based on radiomic features extracted from conventional magnetic resonance (MR) images. METHODS: Preoperative MR images were retrospectively obtained from 272 patients with primary grade II/III gliomas. The patients were randomly allocated in a 2:1 ratio to a training (n = 180) or validation (n = 92) set. A total of 431 radiomic features were extracted from each patient. The lest absolute shrinkage and selection operator (LASSO) method was used for feature selection and radiomic signature construction. Subsequently, a machine-learning model to predict p53 status was established using the selected features and a Support Vector Machine classifier. The predictive performance of all individual features and the model was calculated using receiver operating characteristic curves in both the training and validation sets. RESULTS: The p53-related radiomic signature was built using the LASSO algorithm; this procedure consisted of four first-order statistics or related wavelet features (including Maximum, Median, Minimum, and Uniformity), a shape and size-based feature (Spherical Disproportion), and ten textural features or related wavelet features (including Correlation, Run Percentage, and Sum Entropy). The prediction accuracies based on the area under the curve were 89.6% in the training set and 76.3% in the validation set, which were better than individual features. CONCLUSIONS: These results demonstrate that MR image texture features are predictive of p53 mutation status in lower-grade gliomas. Thus, our procedure can be conveniently used to facilitate presurgical molecular pathological diagnosis.
format Online
Article
Text
id pubmed-5842645
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-58426452018-03-09 MRI features predict p53 status in lower-grade gliomas via a machine-learning approach Li, Yiming Qian, Zenghui Xu, Kaibin Wang, Kai Fan, Xing Li, Shaowu Jiang, Tao Liu, Xing Wang, Yinyan Neuroimage Clin Regular Article BACKGROUND: P53 mutation status is a pivotal biomarker for gliomas. Here, we developed a machine-learning model to predict p53 status in lower-grade gliomas based on radiomic features extracted from conventional magnetic resonance (MR) images. METHODS: Preoperative MR images were retrospectively obtained from 272 patients with primary grade II/III gliomas. The patients were randomly allocated in a 2:1 ratio to a training (n = 180) or validation (n = 92) set. A total of 431 radiomic features were extracted from each patient. The lest absolute shrinkage and selection operator (LASSO) method was used for feature selection and radiomic signature construction. Subsequently, a machine-learning model to predict p53 status was established using the selected features and a Support Vector Machine classifier. The predictive performance of all individual features and the model was calculated using receiver operating characteristic curves in both the training and validation sets. RESULTS: The p53-related radiomic signature was built using the LASSO algorithm; this procedure consisted of four first-order statistics or related wavelet features (including Maximum, Median, Minimum, and Uniformity), a shape and size-based feature (Spherical Disproportion), and ten textural features or related wavelet features (including Correlation, Run Percentage, and Sum Entropy). The prediction accuracies based on the area under the curve were 89.6% in the training set and 76.3% in the validation set, which were better than individual features. CONCLUSIONS: These results demonstrate that MR image texture features are predictive of p53 mutation status in lower-grade gliomas. Thus, our procedure can be conveniently used to facilitate presurgical molecular pathological diagnosis. Elsevier 2017-10-29 /pmc/articles/PMC5842645/ /pubmed/29527478 http://dx.doi.org/10.1016/j.nicl.2017.10.030 Text en © 2017 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Regular Article
Li, Yiming
Qian, Zenghui
Xu, Kaibin
Wang, Kai
Fan, Xing
Li, Shaowu
Jiang, Tao
Liu, Xing
Wang, Yinyan
MRI features predict p53 status in lower-grade gliomas via a machine-learning approach
title MRI features predict p53 status in lower-grade gliomas via a machine-learning approach
title_full MRI features predict p53 status in lower-grade gliomas via a machine-learning approach
title_fullStr MRI features predict p53 status in lower-grade gliomas via a machine-learning approach
title_full_unstemmed MRI features predict p53 status in lower-grade gliomas via a machine-learning approach
title_short MRI features predict p53 status in lower-grade gliomas via a machine-learning approach
title_sort mri features predict p53 status in lower-grade gliomas via a machine-learning approach
topic Regular Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842645/
https://www.ncbi.nlm.nih.gov/pubmed/29527478
http://dx.doi.org/10.1016/j.nicl.2017.10.030
work_keys_str_mv AT liyiming mrifeaturespredictp53statusinlowergradegliomasviaamachinelearningapproach
AT qianzenghui mrifeaturespredictp53statusinlowergradegliomasviaamachinelearningapproach
AT xukaibin mrifeaturespredictp53statusinlowergradegliomasviaamachinelearningapproach
AT wangkai mrifeaturespredictp53statusinlowergradegliomasviaamachinelearningapproach
AT fanxing mrifeaturespredictp53statusinlowergradegliomasviaamachinelearningapproach
AT lishaowu mrifeaturespredictp53statusinlowergradegliomasviaamachinelearningapproach
AT jiangtao mrifeaturespredictp53statusinlowergradegliomasviaamachinelearningapproach
AT liuxing mrifeaturespredictp53statusinlowergradegliomasviaamachinelearningapproach
AT wangyinyan mrifeaturespredictp53statusinlowergradegliomasviaamachinelearningapproach