Cargando…
Multiclass Informative Instance Transfer Learning Framework for Motor Imagery-Based Brain-Computer Interface
A widely discussed paradigm for brain-computer interface (BCI) is the motor imagery task using noninvasive electroencephalography (EEG) modality. It often requires long training session for collecting a large amount of EEG data which makes user exhausted. One of the approaches to shorten this sessio...
Autores principales: | Hossain, Ibrahim, Khosravi, Abbas, Hettiarachchi, Imali, Nahavandi, Saeid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842743/ https://www.ncbi.nlm.nih.gov/pubmed/29681924 http://dx.doi.org/10.1155/2018/6323414 |
Ejemplares similares
-
Validation of Polar OH1 optical heart rate sensor for moderate and high intensity physical activities
por: Hettiarachchi, Imali T., et al.
Publicado: (2019) -
Functional Connectivity and Feature Fusion Enhance Multiclass Motor-Imagery Brain–Computer Interface Performance
por: Siviero, Ilaria, et al.
Publicado: (2023) -
Multiclass Classification Based on Combined Motor Imageries
por: Lindig-León, Cecilia, et al.
Publicado: (2020) -
Multiclass Posterior Probability Twin SVM for Motor Imagery EEG Classification
por: She, Qingshan, et al.
Publicado: (2015) -
Attention-Based DSC-ConvLSTM for Multiclass Motor Imagery Classification
por: Li, Li, et al.
Publicado: (2022)