Cargando…

Structural and effective connectivity in focal epilepsy

Patients with medically-refractory focal epilepsy may be candidates for neurosurgery and some may require placement of intracranial EEG electrodes to localise seizure onset. Assessing cerebral responses to single pulse electrical stimulation (SPES) may give diagnostically useful data. SPES produces...

Descripción completa

Detalles Bibliográficos
Autores principales: Parker, Christopher S., Clayden, Jonathan D., Cardoso, M. Jorge, Rodionov, Roman, Duncan, John S., Scott, Catherine, Diehl, Beate, Ourselin, Sebastien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842760/
https://www.ncbi.nlm.nih.gov/pubmed/29527498
http://dx.doi.org/10.1016/j.nicl.2017.12.020
_version_ 1783304963271688192
author Parker, Christopher S.
Clayden, Jonathan D.
Cardoso, M. Jorge
Rodionov, Roman
Duncan, John S.
Scott, Catherine
Diehl, Beate
Ourselin, Sebastien
author_facet Parker, Christopher S.
Clayden, Jonathan D.
Cardoso, M. Jorge
Rodionov, Roman
Duncan, John S.
Scott, Catherine
Diehl, Beate
Ourselin, Sebastien
author_sort Parker, Christopher S.
collection PubMed
description Patients with medically-refractory focal epilepsy may be candidates for neurosurgery and some may require placement of intracranial EEG electrodes to localise seizure onset. Assessing cerebral responses to single pulse electrical stimulation (SPES) may give diagnostically useful data. SPES produces cortico-cortical evoked potentials (CCEPs), which infer effective brain connectivity. Diffusion-weighted images and tractography may be used to estimate structural brain connectivity. This combination provides the opportunity to observe seizure onset and its propagation throughout the brain, spreading contiguously along the cortex explored with electrodes, or non-contiguously. We analysed CCEPs and diffusion tractography in seven focal epilepsy patients and reconstructed the effective and structural brain networks. We aimed to assess the inter-modal similarity of the networks at a large scale across the cortex, the effective and structural connectivity of the ictal-onset zone, and investigate potential mechanisms of non-contiguous seizure spread. We found a significant overlap between structural and effective networks. Effective network CCEP amplitude, baseline variation, and outward connectivity was higher at ictal-onset zones, while structural connection strength within the ictal-onset zone tended to be higher. These findings support the concept of hyperexcitable cortex being associated with seizure generation. The high prevalence of structural and effective connections from the ictal-onset zone to sites of non-contiguous spread suggests that macroscopic structural and effective connections are plausible routes for non-contiguous seizure spread.
format Online
Article
Text
id pubmed-5842760
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-58427602018-03-09 Structural and effective connectivity in focal epilepsy Parker, Christopher S. Clayden, Jonathan D. Cardoso, M. Jorge Rodionov, Roman Duncan, John S. Scott, Catherine Diehl, Beate Ourselin, Sebastien Neuroimage Clin Regular Article Patients with medically-refractory focal epilepsy may be candidates for neurosurgery and some may require placement of intracranial EEG electrodes to localise seizure onset. Assessing cerebral responses to single pulse electrical stimulation (SPES) may give diagnostically useful data. SPES produces cortico-cortical evoked potentials (CCEPs), which infer effective brain connectivity. Diffusion-weighted images and tractography may be used to estimate structural brain connectivity. This combination provides the opportunity to observe seizure onset and its propagation throughout the brain, spreading contiguously along the cortex explored with electrodes, or non-contiguously. We analysed CCEPs and diffusion tractography in seven focal epilepsy patients and reconstructed the effective and structural brain networks. We aimed to assess the inter-modal similarity of the networks at a large scale across the cortex, the effective and structural connectivity of the ictal-onset zone, and investigate potential mechanisms of non-contiguous seizure spread. We found a significant overlap between structural and effective networks. Effective network CCEP amplitude, baseline variation, and outward connectivity was higher at ictal-onset zones, while structural connection strength within the ictal-onset zone tended to be higher. These findings support the concept of hyperexcitable cortex being associated with seizure generation. The high prevalence of structural and effective connections from the ictal-onset zone to sites of non-contiguous spread suggests that macroscopic structural and effective connections are plausible routes for non-contiguous seizure spread. Elsevier 2017-12-12 /pmc/articles/PMC5842760/ /pubmed/29527498 http://dx.doi.org/10.1016/j.nicl.2017.12.020 Text en © 2017 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Regular Article
Parker, Christopher S.
Clayden, Jonathan D.
Cardoso, M. Jorge
Rodionov, Roman
Duncan, John S.
Scott, Catherine
Diehl, Beate
Ourselin, Sebastien
Structural and effective connectivity in focal epilepsy
title Structural and effective connectivity in focal epilepsy
title_full Structural and effective connectivity in focal epilepsy
title_fullStr Structural and effective connectivity in focal epilepsy
title_full_unstemmed Structural and effective connectivity in focal epilepsy
title_short Structural and effective connectivity in focal epilepsy
title_sort structural and effective connectivity in focal epilepsy
topic Regular Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842760/
https://www.ncbi.nlm.nih.gov/pubmed/29527498
http://dx.doi.org/10.1016/j.nicl.2017.12.020
work_keys_str_mv AT parkerchristophers structuralandeffectiveconnectivityinfocalepilepsy
AT claydenjonathand structuralandeffectiveconnectivityinfocalepilepsy
AT cardosomjorge structuralandeffectiveconnectivityinfocalepilepsy
AT rodionovroman structuralandeffectiveconnectivityinfocalepilepsy
AT duncanjohns structuralandeffectiveconnectivityinfocalepilepsy
AT scottcatherine structuralandeffectiveconnectivityinfocalepilepsy
AT diehlbeate structuralandeffectiveconnectivityinfocalepilepsy
AT ourselinsebastien structuralandeffectiveconnectivityinfocalepilepsy