Cargando…
Structural and effective connectivity in focal epilepsy
Patients with medically-refractory focal epilepsy may be candidates for neurosurgery and some may require placement of intracranial EEG electrodes to localise seizure onset. Assessing cerebral responses to single pulse electrical stimulation (SPES) may give diagnostically useful data. SPES produces...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842760/ https://www.ncbi.nlm.nih.gov/pubmed/29527498 http://dx.doi.org/10.1016/j.nicl.2017.12.020 |
_version_ | 1783304963271688192 |
---|---|
author | Parker, Christopher S. Clayden, Jonathan D. Cardoso, M. Jorge Rodionov, Roman Duncan, John S. Scott, Catherine Diehl, Beate Ourselin, Sebastien |
author_facet | Parker, Christopher S. Clayden, Jonathan D. Cardoso, M. Jorge Rodionov, Roman Duncan, John S. Scott, Catherine Diehl, Beate Ourselin, Sebastien |
author_sort | Parker, Christopher S. |
collection | PubMed |
description | Patients with medically-refractory focal epilepsy may be candidates for neurosurgery and some may require placement of intracranial EEG electrodes to localise seizure onset. Assessing cerebral responses to single pulse electrical stimulation (SPES) may give diagnostically useful data. SPES produces cortico-cortical evoked potentials (CCEPs), which infer effective brain connectivity. Diffusion-weighted images and tractography may be used to estimate structural brain connectivity. This combination provides the opportunity to observe seizure onset and its propagation throughout the brain, spreading contiguously along the cortex explored with electrodes, or non-contiguously. We analysed CCEPs and diffusion tractography in seven focal epilepsy patients and reconstructed the effective and structural brain networks. We aimed to assess the inter-modal similarity of the networks at a large scale across the cortex, the effective and structural connectivity of the ictal-onset zone, and investigate potential mechanisms of non-contiguous seizure spread. We found a significant overlap between structural and effective networks. Effective network CCEP amplitude, baseline variation, and outward connectivity was higher at ictal-onset zones, while structural connection strength within the ictal-onset zone tended to be higher. These findings support the concept of hyperexcitable cortex being associated with seizure generation. The high prevalence of structural and effective connections from the ictal-onset zone to sites of non-contiguous spread suggests that macroscopic structural and effective connections are plausible routes for non-contiguous seizure spread. |
format | Online Article Text |
id | pubmed-5842760 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-58427602018-03-09 Structural and effective connectivity in focal epilepsy Parker, Christopher S. Clayden, Jonathan D. Cardoso, M. Jorge Rodionov, Roman Duncan, John S. Scott, Catherine Diehl, Beate Ourselin, Sebastien Neuroimage Clin Regular Article Patients with medically-refractory focal epilepsy may be candidates for neurosurgery and some may require placement of intracranial EEG electrodes to localise seizure onset. Assessing cerebral responses to single pulse electrical stimulation (SPES) may give diagnostically useful data. SPES produces cortico-cortical evoked potentials (CCEPs), which infer effective brain connectivity. Diffusion-weighted images and tractography may be used to estimate structural brain connectivity. This combination provides the opportunity to observe seizure onset and its propagation throughout the brain, spreading contiguously along the cortex explored with electrodes, or non-contiguously. We analysed CCEPs and diffusion tractography in seven focal epilepsy patients and reconstructed the effective and structural brain networks. We aimed to assess the inter-modal similarity of the networks at a large scale across the cortex, the effective and structural connectivity of the ictal-onset zone, and investigate potential mechanisms of non-contiguous seizure spread. We found a significant overlap between structural and effective networks. Effective network CCEP amplitude, baseline variation, and outward connectivity was higher at ictal-onset zones, while structural connection strength within the ictal-onset zone tended to be higher. These findings support the concept of hyperexcitable cortex being associated with seizure generation. The high prevalence of structural and effective connections from the ictal-onset zone to sites of non-contiguous spread suggests that macroscopic structural and effective connections are plausible routes for non-contiguous seizure spread. Elsevier 2017-12-12 /pmc/articles/PMC5842760/ /pubmed/29527498 http://dx.doi.org/10.1016/j.nicl.2017.12.020 Text en © 2017 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Regular Article Parker, Christopher S. Clayden, Jonathan D. Cardoso, M. Jorge Rodionov, Roman Duncan, John S. Scott, Catherine Diehl, Beate Ourselin, Sebastien Structural and effective connectivity in focal epilepsy |
title | Structural and effective connectivity in focal epilepsy |
title_full | Structural and effective connectivity in focal epilepsy |
title_fullStr | Structural and effective connectivity in focal epilepsy |
title_full_unstemmed | Structural and effective connectivity in focal epilepsy |
title_short | Structural and effective connectivity in focal epilepsy |
title_sort | structural and effective connectivity in focal epilepsy |
topic | Regular Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842760/ https://www.ncbi.nlm.nih.gov/pubmed/29527498 http://dx.doi.org/10.1016/j.nicl.2017.12.020 |
work_keys_str_mv | AT parkerchristophers structuralandeffectiveconnectivityinfocalepilepsy AT claydenjonathand structuralandeffectiveconnectivityinfocalepilepsy AT cardosomjorge structuralandeffectiveconnectivityinfocalepilepsy AT rodionovroman structuralandeffectiveconnectivityinfocalepilepsy AT duncanjohns structuralandeffectiveconnectivityinfocalepilepsy AT scottcatherine structuralandeffectiveconnectivityinfocalepilepsy AT diehlbeate structuralandeffectiveconnectivityinfocalepilepsy AT ourselinsebastien structuralandeffectiveconnectivityinfocalepilepsy |