Cargando…
Toll-like receptor expression in pulmonary sensory neurons in the bleomycin-induced fibrosis model
Airway sensory nerves are known to express several receptors and channels that are activated by exogenous and endogenous mediators that cause coughing. Toll-like receptor (TLR) s are expressed in nociceptive neurons and play an important role in neuroinflammation. However, there have been very few s...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843166/ https://www.ncbi.nlm.nih.gov/pubmed/29518161 http://dx.doi.org/10.1371/journal.pone.0193117 |
_version_ | 1783305033307127808 |
---|---|
author | Jung, Won Jai Lee, Sang Yeub Choi, Sue In Kim, Byung-Keun Lee, Eun Joo In, Kwang Ho Lee, Min-Goo |
author_facet | Jung, Won Jai Lee, Sang Yeub Choi, Sue In Kim, Byung-Keun Lee, Eun Joo In, Kwang Ho Lee, Min-Goo |
author_sort | Jung, Won Jai |
collection | PubMed |
description | Airway sensory nerves are known to express several receptors and channels that are activated by exogenous and endogenous mediators that cause coughing. Toll-like receptor (TLR) s are expressed in nociceptive neurons and play an important role in neuroinflammation. However, there have been very few studies of TLR expression in lung-derived sensory neurons or their relevance to respiratory symptoms such as cough. We used the bleomycin-induced pulmonary fibrosis model to investigate the change in TLR expression in pulmonary neurons and the association of TLRs with transient receptor potential (TRP) channels in pulmonary neurons. After 2 weeks of bleomycin or saline administration, pulmonary fibrosis changes were confirmed using tissue staining and the SIRCOL collagen assay. TLRs (TLR 1–9) and TRP channel expression was analyzed using single cell reverse transcription polymerase chain reaction (RT-PCR) in isolated sensory neurons from the nodose/jugular ganglion and the dorsal root ganglion (DRG). Pulmonary sensory neurons expressed TLR2 and TLR5. In the bleomycin-induced pulmonary fibrosis model, TLR2 expression was detected in 29.5% (18/61) and 26.9% (21/78) of pulmonary nodose/jugular neurons and DRG neurons, respectively. TLR5 was also detected in 55.7% (34/61) and 42.3% (33/78) of pulmonary nodose/jugular neurons and DRG neurons, respectively, in the bleomycin-induced pulmonary fibrosis model. TLR5 was expressed in 63.4% of TRPV1 positive cells and 43.4% of TRPM8 positive cells. In conclusion, TLR2 and TLR5 expression is enhanced, especially in vagal neurons, in the bleomycin-induced fibrosis model group when compared to the saline treated control group. Co-expression of TLR5 and TRP channels in pulmonary sensory neurons was also observed. This work sheds new light on the role of TLRs in the control and manifestation of clinical symptoms, such as cough. To understand the role of TLRs in pulmonary sensory nerves, further study will be required. |
format | Online Article Text |
id | pubmed-5843166 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-58431662018-03-23 Toll-like receptor expression in pulmonary sensory neurons in the bleomycin-induced fibrosis model Jung, Won Jai Lee, Sang Yeub Choi, Sue In Kim, Byung-Keun Lee, Eun Joo In, Kwang Ho Lee, Min-Goo PLoS One Research Article Airway sensory nerves are known to express several receptors and channels that are activated by exogenous and endogenous mediators that cause coughing. Toll-like receptor (TLR) s are expressed in nociceptive neurons and play an important role in neuroinflammation. However, there have been very few studies of TLR expression in lung-derived sensory neurons or their relevance to respiratory symptoms such as cough. We used the bleomycin-induced pulmonary fibrosis model to investigate the change in TLR expression in pulmonary neurons and the association of TLRs with transient receptor potential (TRP) channels in pulmonary neurons. After 2 weeks of bleomycin or saline administration, pulmonary fibrosis changes were confirmed using tissue staining and the SIRCOL collagen assay. TLRs (TLR 1–9) and TRP channel expression was analyzed using single cell reverse transcription polymerase chain reaction (RT-PCR) in isolated sensory neurons from the nodose/jugular ganglion and the dorsal root ganglion (DRG). Pulmonary sensory neurons expressed TLR2 and TLR5. In the bleomycin-induced pulmonary fibrosis model, TLR2 expression was detected in 29.5% (18/61) and 26.9% (21/78) of pulmonary nodose/jugular neurons and DRG neurons, respectively. TLR5 was also detected in 55.7% (34/61) and 42.3% (33/78) of pulmonary nodose/jugular neurons and DRG neurons, respectively, in the bleomycin-induced pulmonary fibrosis model. TLR5 was expressed in 63.4% of TRPV1 positive cells and 43.4% of TRPM8 positive cells. In conclusion, TLR2 and TLR5 expression is enhanced, especially in vagal neurons, in the bleomycin-induced fibrosis model group when compared to the saline treated control group. Co-expression of TLR5 and TRP channels in pulmonary sensory neurons was also observed. This work sheds new light on the role of TLRs in the control and manifestation of clinical symptoms, such as cough. To understand the role of TLRs in pulmonary sensory nerves, further study will be required. Public Library of Science 2018-03-08 /pmc/articles/PMC5843166/ /pubmed/29518161 http://dx.doi.org/10.1371/journal.pone.0193117 Text en © 2018 Jung et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Jung, Won Jai Lee, Sang Yeub Choi, Sue In Kim, Byung-Keun Lee, Eun Joo In, Kwang Ho Lee, Min-Goo Toll-like receptor expression in pulmonary sensory neurons in the bleomycin-induced fibrosis model |
title | Toll-like receptor expression in pulmonary sensory neurons in the bleomycin-induced fibrosis model |
title_full | Toll-like receptor expression in pulmonary sensory neurons in the bleomycin-induced fibrosis model |
title_fullStr | Toll-like receptor expression in pulmonary sensory neurons in the bleomycin-induced fibrosis model |
title_full_unstemmed | Toll-like receptor expression in pulmonary sensory neurons in the bleomycin-induced fibrosis model |
title_short | Toll-like receptor expression in pulmonary sensory neurons in the bleomycin-induced fibrosis model |
title_sort | toll-like receptor expression in pulmonary sensory neurons in the bleomycin-induced fibrosis model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843166/ https://www.ncbi.nlm.nih.gov/pubmed/29518161 http://dx.doi.org/10.1371/journal.pone.0193117 |
work_keys_str_mv | AT jungwonjai tolllikereceptorexpressioninpulmonarysensoryneuronsinthebleomycininducedfibrosismodel AT leesangyeub tolllikereceptorexpressioninpulmonarysensoryneuronsinthebleomycininducedfibrosismodel AT choisuein tolllikereceptorexpressioninpulmonarysensoryneuronsinthebleomycininducedfibrosismodel AT kimbyungkeun tolllikereceptorexpressioninpulmonarysensoryneuronsinthebleomycininducedfibrosismodel AT leeeunjoo tolllikereceptorexpressioninpulmonarysensoryneuronsinthebleomycininducedfibrosismodel AT inkwangho tolllikereceptorexpressioninpulmonarysensoryneuronsinthebleomycininducedfibrosismodel AT leemingoo tolllikereceptorexpressioninpulmonarysensoryneuronsinthebleomycininducedfibrosismodel |