Cargando…
Computational models as predictors of HIV treatment outcomes for the Phidisa cohort in South Africa
BACKGROUND: Selecting the optimal combination of HIV drugs for an individual in resource-limited settings is challenging because of the limited availability of drugs and genotyping. OBJECTIVE: The evaluation as a potential treatment support tool of computational models that predict response to thera...
Autores principales: | Revell, Andrew, Khabo, Paul, Ledwaba, Lotty, Emery, Sean, Wang, Dechao, Wood, Robin, Morrow, Carl, Tempelman, Hugo, Hamers, Raph L., Reiss, Peter, van Sighem, Ard, Pozniak, Anton, Montaner, Julio, Lane, H. Clifford, Larder, Brendan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AOSIS
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843195/ https://www.ncbi.nlm.nih.gov/pubmed/29568609 http://dx.doi.org/10.4102/sajhivmed.v17i1.450 |
Ejemplares similares
-
Potential Impact of a Free Online HIV Treatment Response Prediction System for Reducing Virological Failures and Drug Costs after Antiretroviral Therapy Failure in a Resource-Limited Setting
por: Revell, Andrew D., et al.
Publicado: (2013) -
Morbidity and Mortality According to Latest CD4+ Cell Count among HIV Positive Individuals in South Africa Who Enrolled in Project Phidisa
por: Maduna, Patrick H., et al.
Publicado: (2015) -
Pre-ART Levels of Inflammation and Coagulation Markers Are Strong Predictors of Death in a South African Cohort with Advanced HIV Disease
por: Ledwaba, Lotty, et al.
Publicado: (2012) -
CD4(+) cell dynamics in untreated HIV-1 infection: overall rates, and effects of age, viral load, sex and calendar time
por: Cori, Anne, et al.
Publicado: (2015) -
Moving towards zero new HIV infections: The importance of combination prevention
por: van Sighem, Ard, et al.
Publicado: (2022)