Cargando…

Wideband acoustic immittance for assessing middle ear functioning for preterm neonates in the neonatal intensive care unit

BACKGROUND: The primary aim of newborn hearing screening is to detect permanent hearing loss. Because otoacoustic emissions (OAEs) and automated auditory brainstem response (AABR) are sensitive to hearing loss, they are often used as screening tools. On the other hand, false-positive results are mos...

Descripción completa

Detalles Bibliográficos
Autores principales: Gouws, Nandel, Swanepoel, De Wet, de Jager, Leigh Biagio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AOSIS 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843203/
https://www.ncbi.nlm.nih.gov/pubmed/28697607
http://dx.doi.org/10.4102/sajcd.v64i1.182
_version_ 1783305040074637312
author Gouws, Nandel
Swanepoel, De Wet
de Jager, Leigh Biagio
author_facet Gouws, Nandel
Swanepoel, De Wet
de Jager, Leigh Biagio
author_sort Gouws, Nandel
collection PubMed
description BACKGROUND: The primary aim of newborn hearing screening is to detect permanent hearing loss. Because otoacoustic emissions (OAEs) and automated auditory brainstem response (AABR) are sensitive to hearing loss, they are often used as screening tools. On the other hand, false-positive results are most often because of transient outer- and middle ear conditions. Wideband acoustic immittance (WAI), which includes physical measures known as reflectance and absorbance, has shown potential for accurate assessment of middle ear function in young infants. OBJECTIVE: The main objective of this study was to determine the feasibility of WAI as a diagnostic tool for assessing middle ear functioning in preterm neonates in the neonatal intensive care unit (NICU) designed for premature and ill neonates. A further objective was to indicate the difference between the reflectance values of tones and click stimuli. METHOD: Fifty-six at-risk neonates (30 male and 26 female), with a mean age at testing of 35.6 weeks (range: 32–37 weeks) and a standard deviation of 1.6 from three private hospitals, who passed both the distortion product otoacoustic emission (DPOAE) and AABR tests, were evaluated prior to discharge from the NICU. Neonates who presented with abnormal DPOAE and AABR results were excluded from the study. WAI was measured by using chirp and tone stimuli. In addition to reflectance, the reflectance area index (RAI) values were calculated. RESULTS: Both tone and chirp stimuli indicated high-power reflectance values below a frequency of 1.5 kHz. Median reflectance reached a minimum of 0.67 at 1 kHz – 2 kHz but increased to 0.7 below 1 kHz and 0.72 above 2 kHz for the tone stimuli. For chirp stimuli, the median reflectance reached a minimum of 0.51 at 1 kHz – 2 kHz but increased to 0.68 below 1 kHz and decreased to 0.5 above 2 kHz. A comparison between the present study and previous studies on WAI indicated a substantial variability across all frequency ranges. CONCLUSION: These WAI measurements conducted on at-risk preterm NICU neonates (mean age at testing: 35.6 weeks, range: 32–37 weeks) identified WAI patterns not previously reported in the literature. High reflective values were obtained across all frequency ranges. The age of the neonates when tested might have influenced the results. The neonates included in the present study were very young preterm neonates compared to the ages of neonates in previous studies. WAI measured in at-risk preterm neonates in the NICU was variable with environmental and internal noise influences. Transient conditions affecting the sound-conduction pathway might have influenced the results. Additional research is required to investigate WAI testing in ears with and without middle ear dysfunction. The findings of the current study imply that in preterm neonates it was not possible to determine the feasibility of WAI as a diagnostic tool to differentiate between ears with and without middle ear pathology.
format Online
Article
Text
id pubmed-5843203
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher AOSIS
record_format MEDLINE/PubMed
spelling pubmed-58432032018-03-14 Wideband acoustic immittance for assessing middle ear functioning for preterm neonates in the neonatal intensive care unit Gouws, Nandel Swanepoel, De Wet de Jager, Leigh Biagio S Afr J Commun Disord Original Research BACKGROUND: The primary aim of newborn hearing screening is to detect permanent hearing loss. Because otoacoustic emissions (OAEs) and automated auditory brainstem response (AABR) are sensitive to hearing loss, they are often used as screening tools. On the other hand, false-positive results are most often because of transient outer- and middle ear conditions. Wideband acoustic immittance (WAI), which includes physical measures known as reflectance and absorbance, has shown potential for accurate assessment of middle ear function in young infants. OBJECTIVE: The main objective of this study was to determine the feasibility of WAI as a diagnostic tool for assessing middle ear functioning in preterm neonates in the neonatal intensive care unit (NICU) designed for premature and ill neonates. A further objective was to indicate the difference between the reflectance values of tones and click stimuli. METHOD: Fifty-six at-risk neonates (30 male and 26 female), with a mean age at testing of 35.6 weeks (range: 32–37 weeks) and a standard deviation of 1.6 from three private hospitals, who passed both the distortion product otoacoustic emission (DPOAE) and AABR tests, were evaluated prior to discharge from the NICU. Neonates who presented with abnormal DPOAE and AABR results were excluded from the study. WAI was measured by using chirp and tone stimuli. In addition to reflectance, the reflectance area index (RAI) values were calculated. RESULTS: Both tone and chirp stimuli indicated high-power reflectance values below a frequency of 1.5 kHz. Median reflectance reached a minimum of 0.67 at 1 kHz – 2 kHz but increased to 0.7 below 1 kHz and 0.72 above 2 kHz for the tone stimuli. For chirp stimuli, the median reflectance reached a minimum of 0.51 at 1 kHz – 2 kHz but increased to 0.68 below 1 kHz and decreased to 0.5 above 2 kHz. A comparison between the present study and previous studies on WAI indicated a substantial variability across all frequency ranges. CONCLUSION: These WAI measurements conducted on at-risk preterm NICU neonates (mean age at testing: 35.6 weeks, range: 32–37 weeks) identified WAI patterns not previously reported in the literature. High reflective values were obtained across all frequency ranges. The age of the neonates when tested might have influenced the results. The neonates included in the present study were very young preterm neonates compared to the ages of neonates in previous studies. WAI measured in at-risk preterm neonates in the NICU was variable with environmental and internal noise influences. Transient conditions affecting the sound-conduction pathway might have influenced the results. Additional research is required to investigate WAI testing in ears with and without middle ear dysfunction. The findings of the current study imply that in preterm neonates it was not possible to determine the feasibility of WAI as a diagnostic tool to differentiate between ears with and without middle ear pathology. AOSIS 2017-06-28 /pmc/articles/PMC5843203/ /pubmed/28697607 http://dx.doi.org/10.4102/sajcd.v64i1.182 Text en © 2017. The Authors http://creativecommons.org/licenses/by/2.0/ Licensee: AOSIS. This work is licensed under the Creative Commons Attribution License.
spellingShingle Original Research
Gouws, Nandel
Swanepoel, De Wet
de Jager, Leigh Biagio
Wideband acoustic immittance for assessing middle ear functioning for preterm neonates in the neonatal intensive care unit
title Wideband acoustic immittance for assessing middle ear functioning for preterm neonates in the neonatal intensive care unit
title_full Wideband acoustic immittance for assessing middle ear functioning for preterm neonates in the neonatal intensive care unit
title_fullStr Wideband acoustic immittance for assessing middle ear functioning for preterm neonates in the neonatal intensive care unit
title_full_unstemmed Wideband acoustic immittance for assessing middle ear functioning for preterm neonates in the neonatal intensive care unit
title_short Wideband acoustic immittance for assessing middle ear functioning for preterm neonates in the neonatal intensive care unit
title_sort wideband acoustic immittance for assessing middle ear functioning for preterm neonates in the neonatal intensive care unit
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843203/
https://www.ncbi.nlm.nih.gov/pubmed/28697607
http://dx.doi.org/10.4102/sajcd.v64i1.182
work_keys_str_mv AT gouwsnandel widebandacousticimmittanceforassessingmiddleearfunctioningforpretermneonatesintheneonatalintensivecareunit
AT swanepoeldewet widebandacousticimmittanceforassessingmiddleearfunctioningforpretermneonatesintheneonatalintensivecareunit
AT dejagerleighbiagio widebandacousticimmittanceforassessingmiddleearfunctioningforpretermneonatesintheneonatalintensivecareunit