Cargando…
Nonnegative Matrix Factorization for identification of unknown number of sources emitting delayed signals
Factor analysis is broadly used as a powerful unsupervised machine learning tool for reconstruction of hidden features in recorded mixtures of signals. In the case of a linear approximation, the mixtures can be decomposed by a variety of model-free Blind Source Separation (BSS) algorithms. Most of t...
Autores principales: | Iliev, Filip L., Stanev, Valentin G., Vesselinov, Velimir V., Alexandrov, Boian S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843288/ https://www.ncbi.nlm.nih.gov/pubmed/29518126 http://dx.doi.org/10.1371/journal.pone.0193974 |
Ejemplares similares
-
Nonnegative/Binary matrix factorization with a D-Wave quantum annealer
por: O’Malley, Daniel, et al.
Publicado: (2018) -
Monotonicity of the number of positive entries in nonnegative matrix powers
por: Xie, Qimiao
Publicado: (2018) -
Advances in Nonnegative Matrix and Tensor Factorization
por: Cichocki, A., et al.
Publicado: (2008) -
Pattern Expression Nonnegative Matrix Factorization: Algorithm and Applications to Blind Source Separation
por: Zhang, Junying, et al.
Publicado: (2008) -
Nonnegative Matrix Factorization with Gaussian Process Priors
por: Schmidt, Mikkel N., et al.
Publicado: (2008)