Cargando…

Enhanced Dissolution Rate of Tadalafil Nanoparticles Prepared by Sonoprecipitation Technique: Optimization and Physicochemical Investigation

Nanocrystals of tadalafil, a poorly water-soluble drug, were successfully prepared by sonoprecipitation technique for improving the solubility and dissolution rate. Tween 80 was selected as an efficient surfactant to inhibit aggregation in stabilization of drug nanocrystals. Response surface methodo...

Descripción completa

Detalles Bibliográficos
Autores principales: Teymouri Rad, Rayehe, Mortazavi, Seyed Alireza, Vatanara, Alireza, Dadashzadeh, Simin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shaheed Beheshti University of Medical Sciences 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843297/
https://www.ncbi.nlm.nih.gov/pubmed/29721025
Descripción
Sumario:Nanocrystals of tadalafil, a poorly water-soluble drug, were successfully prepared by sonoprecipitation technique for improving the solubility and dissolution rate. Tween 80 was selected as an efficient surfactant to inhibit aggregation in stabilization of drug nanocrystals. Response surface methodology based on central composite design (CCD) was utilized to evaluate the formulation factors affecting the size of nanosuspensions. Under optimum conditions, relatively spherical nanocrystals with a mean particle size of 358.47 ± 11.95nm were obtained. FTIR analysis indicated that the precipitated nanoparticles had the same chemical structure as the raw tadalafil. By DSC analysis, no substantial crystalline change was found in the nanocrystals compared with the unprocessed drug. In addition, the dissolution rate of the processed tadalafil nanocrystals in 120 min was significantly increased (3.61-fold) as compared to that of the raw material. Therefore, it was concluded that the sonoprecipitation technique could be a simple and useful technique to prepare poorly water-soluble drug particles with reduction in particle size, a narrow particle size distribution and enhanced dissolution properties.