Cargando…

A fuzzy rule-based expert system for diagnosing cystic fibrosis

BACKGROUND: Finding a valid diagnosis is mostly a prolonged process. Current advances in the sector of artificial intelligence have led to the appearance of expert systems that enrich the experiences and capabilities of doctors for making decisions for their patients. OBJECTIVE: The objective of thi...

Descripción completa

Detalles Bibliográficos
Autores principales: Hassanzad, Maryam, Orooji, Azam, Valinejadi, Ali, Velayati, Aliakbar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Electronic physician 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843424/
https://www.ncbi.nlm.nih.gov/pubmed/29560150
http://dx.doi.org/10.19082/5974
Descripción
Sumario:BACKGROUND: Finding a valid diagnosis is mostly a prolonged process. Current advances in the sector of artificial intelligence have led to the appearance of expert systems that enrich the experiences and capabilities of doctors for making decisions for their patients. OBJECTIVE: The objective of this research was developing a fuzzy expert system for diagnosing Cystic Fibrosis (CF). METHODS: Defining the risk factors and then, designing the fuzzy expert system for diagnosis of CF were carried out in this cross-sectional study. To evaluate the performance of the proposed system, a dataset that corresponded to 70 patients with respiratory disease who were serially admitted to the CF Clinic in the Pediatric Respiratory Diseases Center, Masih Daneshvari Hospital in Tehran, Iran during August 2016 to January 2017 was considered. Whole procedures of system construction were implemented in a MATLAB environment. RESULTS: Results showed that the suggested system can be used as a strong diagnostic tool with 93.02% precision, 89.29% specificity, 95.24% sensitivity and 92.86% accuracy for diagnosing CF. There was also a good relationship between the user and the system through the appealing user interface. CONCLUSION: The system is equipped with information, knowledge, and expertise from certified specialists; hence, as a training tool it can be useful for new physicians. It is worth mentioning that the accomplishment of this project depends on advocacy of decision making in CF diagnosis. Nevertheless, it is expected that the system will reduce the number of false positives and false negatives in unusual cases.