Cargando…
OPERA models for predicting physicochemical properties and environmental fate endpoints
The collection of chemical structure information and associated experimental data for quantitative structure–activity/property relationship (QSAR/QSPR) modeling is facilitated by an increasing number of public databases containing large amounts of useful data. However, the performance of QSAR models...
Autores principales: | Mansouri, Kamel, Grulke, Chris M., Judson, Richard S., Williams, Antony J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843579/ https://www.ncbi.nlm.nih.gov/pubmed/29520515 http://dx.doi.org/10.1186/s13321-018-0263-1 |
Ejemplares similares
-
The CompTox Chemistry Dashboard: a community data resource for environmental chemistry
por: Williams, Antony J., et al.
Publicado: (2017) -
Predicting molecular initiating events using chemical target annotations and gene expression
por: Bundy, Joseph L., et al.
Publicado: (2022) -
Best Practices for QSAR Model Reporting: Physical and Chemical Properties, Ecotoxicity, Environmental Fate, Human Health, and Toxicokinetics Endpoints
por: Piir, Geven, et al.
Publicado: (2018) -
Open-source QSAR models for pKa prediction using multiple machine learning approaches
por: Mansouri, Kamel, et al.
Publicado: (2019) -
“MS-Ready” structures for non-targeted high-resolution mass spectrometry screening studies
por: McEachran, Andrew D., et al.
Publicado: (2018)