Cargando…
Optimisation of ex vivo memory B cell expansion/differentiation for interrogation of rare peripheral memory B cell subset responses
Background: Human memory B cells play a vital role in the long-term protection of the host from pathogenic re-challenge. In recent years the importance of a number of different memory B cell subsets that can be formed in response to vaccination or infection has started to become clear. To study memo...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843844/ https://www.ncbi.nlm.nih.gov/pubmed/29588920 http://dx.doi.org/10.12688/wellcomeopenres.11386.2 |
_version_ | 1783305147380662272 |
---|---|
author | Muir, Luke McKay, Paul F. Petrova, Velislava N. Klymenko, Oleksiy V. Kratochvil, Sven Pinder, Christopher L. Kellam, Paul Shattock, Robin J. |
author_facet | Muir, Luke McKay, Paul F. Petrova, Velislava N. Klymenko, Oleksiy V. Kratochvil, Sven Pinder, Christopher L. Kellam, Paul Shattock, Robin J. |
author_sort | Muir, Luke |
collection | PubMed |
description | Background: Human memory B cells play a vital role in the long-term protection of the host from pathogenic re-challenge. In recent years the importance of a number of different memory B cell subsets that can be formed in response to vaccination or infection has started to become clear. To study memory B cell responses, cells can be cultured ex vivo, allowing for an increase in cell number and activation of these quiescent cells, providing sufficient quantities of each memory subset to enable full investigation of functionality. However, despite numerous papers being published demonstrating bulk memory B cell culture, we could find no literature on optimised conditions for the study of memory B cell subsets, such as IgM (+) memory B cells. Methods: Following a literature review, we carried out a large screen of memory B cell expansion conditions to identify the combination that induced the highest levels of memory B cell expansion. We subsequently used a novel Design of Experiments approach to finely tune the optimal memory B cell expansion and differentiation conditions for human memory B cell subsets. Finally, we characterised the resultant memory B cell subpopulations by IgH sequencing and flow cytometry. Results: The application of specific optimised conditions induce multiple rounds of memory B cell proliferation equally across Ig isotypes, differentiation of memory B cells to antibody secreting cells, and importantly do not alter the Ig genotype of the stimulated cells. Conclusions: Overall, our data identify a memory B cell culture system that offers a robust platform for investigating the functionality of rare memory B cell subsets to infection and/or vaccination. |
format | Online Article Text |
id | pubmed-5843844 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | F1000 Research Limited |
record_format | MEDLINE/PubMed |
spelling | pubmed-58438442018-03-26 Optimisation of ex vivo memory B cell expansion/differentiation for interrogation of rare peripheral memory B cell subset responses Muir, Luke McKay, Paul F. Petrova, Velislava N. Klymenko, Oleksiy V. Kratochvil, Sven Pinder, Christopher L. Kellam, Paul Shattock, Robin J. Wellcome Open Res Research Article Background: Human memory B cells play a vital role in the long-term protection of the host from pathogenic re-challenge. In recent years the importance of a number of different memory B cell subsets that can be formed in response to vaccination or infection has started to become clear. To study memory B cell responses, cells can be cultured ex vivo, allowing for an increase in cell number and activation of these quiescent cells, providing sufficient quantities of each memory subset to enable full investigation of functionality. However, despite numerous papers being published demonstrating bulk memory B cell culture, we could find no literature on optimised conditions for the study of memory B cell subsets, such as IgM (+) memory B cells. Methods: Following a literature review, we carried out a large screen of memory B cell expansion conditions to identify the combination that induced the highest levels of memory B cell expansion. We subsequently used a novel Design of Experiments approach to finely tune the optimal memory B cell expansion and differentiation conditions for human memory B cell subsets. Finally, we characterised the resultant memory B cell subpopulations by IgH sequencing and flow cytometry. Results: The application of specific optimised conditions induce multiple rounds of memory B cell proliferation equally across Ig isotypes, differentiation of memory B cells to antibody secreting cells, and importantly do not alter the Ig genotype of the stimulated cells. Conclusions: Overall, our data identify a memory B cell culture system that offers a robust platform for investigating the functionality of rare memory B cell subsets to infection and/or vaccination. F1000 Research Limited 2018-01-24 /pmc/articles/PMC5843844/ /pubmed/29588920 http://dx.doi.org/10.12688/wellcomeopenres.11386.2 Text en Copyright: © 2018 Muir L et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Muir, Luke McKay, Paul F. Petrova, Velislava N. Klymenko, Oleksiy V. Kratochvil, Sven Pinder, Christopher L. Kellam, Paul Shattock, Robin J. Optimisation of ex vivo memory B cell expansion/differentiation for interrogation of rare peripheral memory B cell subset responses |
title | Optimisation of
ex vivo memory B cell expansion/differentiation for interrogation of rare peripheral memory B cell subset responses |
title_full | Optimisation of
ex vivo memory B cell expansion/differentiation for interrogation of rare peripheral memory B cell subset responses |
title_fullStr | Optimisation of
ex vivo memory B cell expansion/differentiation for interrogation of rare peripheral memory B cell subset responses |
title_full_unstemmed | Optimisation of
ex vivo memory B cell expansion/differentiation for interrogation of rare peripheral memory B cell subset responses |
title_short | Optimisation of
ex vivo memory B cell expansion/differentiation for interrogation of rare peripheral memory B cell subset responses |
title_sort | optimisation of
ex vivo memory b cell expansion/differentiation for interrogation of rare peripheral memory b cell subset responses |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843844/ https://www.ncbi.nlm.nih.gov/pubmed/29588920 http://dx.doi.org/10.12688/wellcomeopenres.11386.2 |
work_keys_str_mv | AT muirluke optimisationofexvivomemorybcellexpansiondifferentiationforinterrogationofrareperipheralmemorybcellsubsetresponses AT mckaypaulf optimisationofexvivomemorybcellexpansiondifferentiationforinterrogationofrareperipheralmemorybcellsubsetresponses AT petrovavelislavan optimisationofexvivomemorybcellexpansiondifferentiationforinterrogationofrareperipheralmemorybcellsubsetresponses AT klymenkooleksiyv optimisationofexvivomemorybcellexpansiondifferentiationforinterrogationofrareperipheralmemorybcellsubsetresponses AT kratochvilsven optimisationofexvivomemorybcellexpansiondifferentiationforinterrogationofrareperipheralmemorybcellsubsetresponses AT pinderchristopherl optimisationofexvivomemorybcellexpansiondifferentiationforinterrogationofrareperipheralmemorybcellsubsetresponses AT kellampaul optimisationofexvivomemorybcellexpansiondifferentiationforinterrogationofrareperipheralmemorybcellsubsetresponses AT shattockrobinj optimisationofexvivomemorybcellexpansiondifferentiationforinterrogationofrareperipheralmemorybcellsubsetresponses |