Cargando…

miR-205 mediates the inhibition of cervical cancer cell proliferation using olmesartan

OBJECTIVE: The renin-angiotensin-aldosterone system has become known as a prerequisite for tumor angiogenesis that is now recognized as a crucial step in the development of tumors, including cervical cancer. The Ang II-AT1R pathway is known to play an important role in tumor angiogenesis. MicroRNAs...

Descripción completa

Detalles Bibliográficos
Autores principales: Yue, Zhang, Yun-shan, Zhang, Feng-xia, Xue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843885/
https://www.ncbi.nlm.nih.gov/pubmed/28304186
http://dx.doi.org/10.1177/1470320316663327
Descripción
Sumario:OBJECTIVE: The renin-angiotensin-aldosterone system has become known as a prerequisite for tumor angiogenesis that is now recognized as a crucial step in the development of tumors, including cervical cancer. The Ang II-AT1R pathway is known to play an important role in tumor angiogenesis. MicroRNAs (miRNAs) are a class of small, regulating RNAs that participate in tumor genesis, differentiation and proliferation. The current study focused on the anti-tumor mechanism of olmesartan, a novel angiotensin II antagonist, on cervical cancer cells. MATERIALS AND METHODS: qRT-PCR and Western blot were used to demonstrate the effect of olmesartan on miR-205 and VEGF-A expression. miR-205 mimics and VEGF-A shRNA plasmid were separately transfected into HeLa and Siha cells to further validate the function of miR-205 and VEGF-A in cervical cancer cell proliferation. RESULTS: It was found that olmesartan could upregulate miR-205 and inhibit VEGF-A expression in HeLa and Siha cells. In addition, VEGF-A was proven to be a target gene of miR-205. CONCLUSION: This result provides a new idea on the anti-tumor mechanism of olmesartan, which may be used as a novel therapeutic target of cervical cancer.