Cargando…

Identification of functional modules induced by bare-metal stents and paclitaxel-eluting stents in coronary heart disease

Bare-metal stents (BMS) and paclitaxel-eluting stent (PES) are frequently used in medicine for the treatment of coronary heart disease, with millions of patients treated worldwide. The protein-protein interactions (PPI) were adopted to construct the networks. The M-module algorithm was used to ident...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Zhaobin, Gu, Jingjing, Sun, Ping, Zhao, Jing, Zhao, Yonggang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844177/
https://www.ncbi.nlm.nih.gov/pubmed/29556263
http://dx.doi.org/10.3892/etm.2018.5879
Descripción
Sumario:Bare-metal stents (BMS) and paclitaxel-eluting stent (PES) are frequently used in medicine for the treatment of coronary heart disease, with millions of patients treated worldwide. The protein-protein interactions (PPI) were adopted to construct the networks. The M-module algorithm was used to identify multiple differential modules. Gene Ontology enrichment and pathway enrichment analysis were performed to analyze characteristics of modules. With the PPI and microarray data, two differential co-expressed networks were constructed, module 1 indicating PES and module 2 indicating BMS, with the same genes but different edges. At a module connectivity dynamic score P-value cut-off of <0.05, module 1 was identified with 142 nodes and 460 edges and in the module 2, 73 nodes and 222 edges were identified. Significant biological processes and pathways were found different in the two modules. Through the two differential modules, we revealed the potential molecular changes induced by PES and BMS providing new insights into the underlying mechanisms in human left internal mammary arteries after inserted with a stent.