Cargando…
Classification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest
BACKGROUND & OBJECTIVE: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is us...
Autores principales: | Ram, Malihe, Najafi, Ali, Shakeri, Mohammad Taghi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Iranian Society of Pathology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844678/ https://www.ncbi.nlm.nih.gov/pubmed/29563929 |
Ejemplares similares
-
Random forest for gene selection and microarray data classification
por: Moorthy, Kohbalan, et al.
Publicado: (2011) -
Gene selection and classification of microarray data using random forest
por: Díaz-Uriarte, Ramón, et al.
Publicado: (2006) -
Classification and biomarker gene selection of pyroptosis-related gene expression in psoriasis using a random forest algorithm
por: Song, Jian-Kun, et al.
Publicado: (2022) -
A balanced iterative random forest for gene selection from microarray data
por: Anaissi, Ali, et al.
Publicado: (2013) -
A Cascade Flexible Neural Forest Model for Cancer Subtypes Classification on Gene Expression Data
por: Zhong, Lianxin, et al.
Publicado: (2021)