Cargando…
Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy
Skyrmions are topologically protected non-collinear magnetic structures. Their stability is ideally suited to carry information in, e.g., racetrack memories. The success of such a memory critically depends on the ability to stabilize and manipulate skyrmions at low magnetic fields. The non-collinear...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844874/ https://www.ncbi.nlm.nih.gov/pubmed/29523833 http://dx.doi.org/10.1038/s41467-018-03240-w |
_version_ | 1783305307110244352 |
---|---|
author | Hervé, Marie Dupé, Bertrand Lopes, Rafael Böttcher, Marie Martins, Maximiliano D. Balashov, Timofey Gerhard, Lukas Sinova, Jairo Wulfhekel, Wulf |
author_facet | Hervé, Marie Dupé, Bertrand Lopes, Rafael Böttcher, Marie Martins, Maximiliano D. Balashov, Timofey Gerhard, Lukas Sinova, Jairo Wulfhekel, Wulf |
author_sort | Hervé, Marie |
collection | PubMed |
description | Skyrmions are topologically protected non-collinear magnetic structures. Their stability is ideally suited to carry information in, e.g., racetrack memories. The success of such a memory critically depends on the ability to stabilize and manipulate skyrmions at low magnetic fields. The non-collinear Dzyaloshinskii-Moriya interaction originating from spin-orbit coupling drives skyrmion formation. It competes with Heisenberg exchange and magnetic anisotropy favoring collinear states. Isolated skyrmions in ultra-thin films so far required magnetic fields as high as several Tesla. Here, we show that isolated skyrmions in a monolayer of Co/Ru(0001) can be stabilized down to vanishing fields. Even with the weak spin-orbit coupling of the 4d element Ru, homochiral spin spirals and isolated skyrmions were detected with spin-sensitive scanning tunneling microscopy. Density functional theory calculations explain the stability of the chiral magnetic features by the absence of magnetic anisotropy energy. |
format | Online Article Text |
id | pubmed-5844874 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-58448742018-03-13 Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy Hervé, Marie Dupé, Bertrand Lopes, Rafael Böttcher, Marie Martins, Maximiliano D. Balashov, Timofey Gerhard, Lukas Sinova, Jairo Wulfhekel, Wulf Nat Commun Article Skyrmions are topologically protected non-collinear magnetic structures. Their stability is ideally suited to carry information in, e.g., racetrack memories. The success of such a memory critically depends on the ability to stabilize and manipulate skyrmions at low magnetic fields. The non-collinear Dzyaloshinskii-Moriya interaction originating from spin-orbit coupling drives skyrmion formation. It competes with Heisenberg exchange and magnetic anisotropy favoring collinear states. Isolated skyrmions in ultra-thin films so far required magnetic fields as high as several Tesla. Here, we show that isolated skyrmions in a monolayer of Co/Ru(0001) can be stabilized down to vanishing fields. Even with the weak spin-orbit coupling of the 4d element Ru, homochiral spin spirals and isolated skyrmions were detected with spin-sensitive scanning tunneling microscopy. Density functional theory calculations explain the stability of the chiral magnetic features by the absence of magnetic anisotropy energy. Nature Publishing Group UK 2018-03-09 /pmc/articles/PMC5844874/ /pubmed/29523833 http://dx.doi.org/10.1038/s41467-018-03240-w Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Hervé, Marie Dupé, Bertrand Lopes, Rafael Böttcher, Marie Martins, Maximiliano D. Balashov, Timofey Gerhard, Lukas Sinova, Jairo Wulfhekel, Wulf Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy |
title | Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy |
title_full | Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy |
title_fullStr | Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy |
title_full_unstemmed | Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy |
title_short | Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy |
title_sort | stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844874/ https://www.ncbi.nlm.nih.gov/pubmed/29523833 http://dx.doi.org/10.1038/s41467-018-03240-w |
work_keys_str_mv | AT hervemarie stabilizingspinspiralsandisolatedskyrmionsatlowmagneticfieldexploitingvanishingmagneticanisotropy AT dupebertrand stabilizingspinspiralsandisolatedskyrmionsatlowmagneticfieldexploitingvanishingmagneticanisotropy AT lopesrafael stabilizingspinspiralsandisolatedskyrmionsatlowmagneticfieldexploitingvanishingmagneticanisotropy AT bottchermarie stabilizingspinspiralsandisolatedskyrmionsatlowmagneticfieldexploitingvanishingmagneticanisotropy AT martinsmaximilianod stabilizingspinspiralsandisolatedskyrmionsatlowmagneticfieldexploitingvanishingmagneticanisotropy AT balashovtimofey stabilizingspinspiralsandisolatedskyrmionsatlowmagneticfieldexploitingvanishingmagneticanisotropy AT gerhardlukas stabilizingspinspiralsandisolatedskyrmionsatlowmagneticfieldexploitingvanishingmagneticanisotropy AT sinovajairo stabilizingspinspiralsandisolatedskyrmionsatlowmagneticfieldexploitingvanishingmagneticanisotropy AT wulfhekelwulf stabilizingspinspiralsandisolatedskyrmionsatlowmagneticfieldexploitingvanishingmagneticanisotropy |