Cargando…

Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy

Skyrmions are topologically protected non-collinear magnetic structures. Their stability is ideally suited to carry information in, e.g., racetrack memories. The success of such a memory critically depends on the ability to stabilize and manipulate skyrmions at low magnetic fields. The non-collinear...

Descripción completa

Detalles Bibliográficos
Autores principales: Hervé, Marie, Dupé, Bertrand, Lopes, Rafael, Böttcher, Marie, Martins, Maximiliano D., Balashov, Timofey, Gerhard, Lukas, Sinova, Jairo, Wulfhekel, Wulf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844874/
https://www.ncbi.nlm.nih.gov/pubmed/29523833
http://dx.doi.org/10.1038/s41467-018-03240-w
_version_ 1783305307110244352
author Hervé, Marie
Dupé, Bertrand
Lopes, Rafael
Böttcher, Marie
Martins, Maximiliano D.
Balashov, Timofey
Gerhard, Lukas
Sinova, Jairo
Wulfhekel, Wulf
author_facet Hervé, Marie
Dupé, Bertrand
Lopes, Rafael
Böttcher, Marie
Martins, Maximiliano D.
Balashov, Timofey
Gerhard, Lukas
Sinova, Jairo
Wulfhekel, Wulf
author_sort Hervé, Marie
collection PubMed
description Skyrmions are topologically protected non-collinear magnetic structures. Their stability is ideally suited to carry information in, e.g., racetrack memories. The success of such a memory critically depends on the ability to stabilize and manipulate skyrmions at low magnetic fields. The non-collinear Dzyaloshinskii-Moriya interaction originating from spin-orbit coupling drives skyrmion formation. It competes with Heisenberg exchange and magnetic anisotropy favoring collinear states. Isolated skyrmions in ultra-thin films so far required magnetic fields as high as several Tesla. Here, we show that isolated skyrmions in a monolayer of Co/Ru(0001) can be stabilized down to vanishing fields. Even with the weak spin-orbit coupling of the 4d element Ru, homochiral spin spirals and isolated skyrmions were detected with spin-sensitive scanning tunneling microscopy. Density functional theory calculations explain the stability of the chiral magnetic features by the absence of magnetic anisotropy energy.
format Online
Article
Text
id pubmed-5844874
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-58448742018-03-13 Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy Hervé, Marie Dupé, Bertrand Lopes, Rafael Böttcher, Marie Martins, Maximiliano D. Balashov, Timofey Gerhard, Lukas Sinova, Jairo Wulfhekel, Wulf Nat Commun Article Skyrmions are topologically protected non-collinear magnetic structures. Their stability is ideally suited to carry information in, e.g., racetrack memories. The success of such a memory critically depends on the ability to stabilize and manipulate skyrmions at low magnetic fields. The non-collinear Dzyaloshinskii-Moriya interaction originating from spin-orbit coupling drives skyrmion formation. It competes with Heisenberg exchange and magnetic anisotropy favoring collinear states. Isolated skyrmions in ultra-thin films so far required magnetic fields as high as several Tesla. Here, we show that isolated skyrmions in a monolayer of Co/Ru(0001) can be stabilized down to vanishing fields. Even with the weak spin-orbit coupling of the 4d element Ru, homochiral spin spirals and isolated skyrmions were detected with spin-sensitive scanning tunneling microscopy. Density functional theory calculations explain the stability of the chiral magnetic features by the absence of magnetic anisotropy energy. Nature Publishing Group UK 2018-03-09 /pmc/articles/PMC5844874/ /pubmed/29523833 http://dx.doi.org/10.1038/s41467-018-03240-w Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Hervé, Marie
Dupé, Bertrand
Lopes, Rafael
Böttcher, Marie
Martins, Maximiliano D.
Balashov, Timofey
Gerhard, Lukas
Sinova, Jairo
Wulfhekel, Wulf
Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy
title Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy
title_full Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy
title_fullStr Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy
title_full_unstemmed Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy
title_short Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy
title_sort stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844874/
https://www.ncbi.nlm.nih.gov/pubmed/29523833
http://dx.doi.org/10.1038/s41467-018-03240-w
work_keys_str_mv AT hervemarie stabilizingspinspiralsandisolatedskyrmionsatlowmagneticfieldexploitingvanishingmagneticanisotropy
AT dupebertrand stabilizingspinspiralsandisolatedskyrmionsatlowmagneticfieldexploitingvanishingmagneticanisotropy
AT lopesrafael stabilizingspinspiralsandisolatedskyrmionsatlowmagneticfieldexploitingvanishingmagneticanisotropy
AT bottchermarie stabilizingspinspiralsandisolatedskyrmionsatlowmagneticfieldexploitingvanishingmagneticanisotropy
AT martinsmaximilianod stabilizingspinspiralsandisolatedskyrmionsatlowmagneticfieldexploitingvanishingmagneticanisotropy
AT balashovtimofey stabilizingspinspiralsandisolatedskyrmionsatlowmagneticfieldexploitingvanishingmagneticanisotropy
AT gerhardlukas stabilizingspinspiralsandisolatedskyrmionsatlowmagneticfieldexploitingvanishingmagneticanisotropy
AT sinovajairo stabilizingspinspiralsandisolatedskyrmionsatlowmagneticfieldexploitingvanishingmagneticanisotropy
AT wulfhekelwulf stabilizingspinspiralsandisolatedskyrmionsatlowmagneticfieldexploitingvanishingmagneticanisotropy