Cargando…
Improved Graph Embedding for Robust Recognition with outliers
Artifacts in biomedical signal recordings, such as gene expression, sonar image and electroencephalogram, have a great influence on the related research because the artifacts with large value usually break the neighbor structure in the datasets. However, the conventional graph embedding (GE) used fo...
Autores principales: | Li, Peiyang, Zhou, Weiwei, Huang, Xiaoye, Zhu, Xuyang, Liu, Huan, Ma, Teng, Guo, Daqing, Yao, Dezhong, Xu, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844917/ https://www.ncbi.nlm.nih.gov/pubmed/29523793 http://dx.doi.org/10.1038/s41598-018-22207-x |
Ejemplares similares
-
Dynamic graph embedding for outlier detection on multiple meteorological time series
por: Li, Gen, et al.
Publicado: (2021) -
Node embedding-based graph autoencoder outlier detection for adverse pregnancy outcomes
por: Khan, Wasif, et al.
Publicado: (2023) -
Extracting time-frequency feature of single-channel vastus medialis EMG signals for knee exercise pattern recognition
por: Zhang, Yi, et al.
Publicado: (2017) -
Improving Electronic Sensor Reliability by Robust Outlier Screening
por: Moreno-Lizaranzu, Manuel J., et al.
Publicado: (2013) -
Robust Attribute and Structure Preserving Graph Embedding
por: Hettige, Bhagya, et al.
Publicado: (2020)