Cargando…
Design and Selection of Machine Learning Methods Using Radiomics and Dosiomics for Normal Tissue Complication Probability Modeling of Xerostomia
PURPOSE: The purpose of this study is to investigate whether machine learning with dosiomic, radiomic, and demographic features allows for xerostomia risk assessment more precise than normal tissue complication probability (NTCP) models based on the mean radiation dose to parotid glands. MATERIAL AN...
Autores principales: | Gabryś, Hubert S., Buettner, Florian, Sterzing, Florian, Hauswald, Henrik, Bangert, Mark |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844945/ https://www.ncbi.nlm.nih.gov/pubmed/29556480 http://dx.doi.org/10.3389/fonc.2018.00035 |
Ejemplares similares
-
Incorporation of Dosimetric Gradients and Parotid Gland Migration Into Xerostomia Prediction
por: Astaburuaga, Rosario, et al.
Publicado: (2019) -
Review of Radiomics- and Dosiomics-based Predicting Models for Rectal Cancer
por: Qin, Yun, et al.
Publicado: (2022) -
Radiomic and Dosiomic Features for the Prediction of Radiation Pneumonitis Across Esophageal Cancer and Lung Cancer
por: Puttanawarut, Chanon, et al.
Publicado: (2022) -
Dosiomics and radiomics to predict pneumonitis after thoracic stereotactic body radiotherapy and immune checkpoint inhibition
por: Kraus, Kim Melanie, et al.
Publicado: (2023) -
CT-based dosiomics and radiomics model predicts radiation-induced lymphopenia in nasopharyngeal carcinoma patients
por: Huang, Qingfang, et al.
Publicado: (2023)