Cargando…
Determining Genetic Causal Variants Through Multivariate Regression Using Mixture Model Penalty
With the availability of high-throughput sequencing data, identification of genetic causal variants accurately requires the efficient incorporation of function annotation data into the optimization routine. This motivates the need for development of novel methods for genome wide association studies...
Autores principales: | Sundar, V. S., Fan, Chun-Chieh, Holland, Dominic, Dale, Anders M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844985/ https://www.ncbi.nlm.nih.gov/pubmed/29556250 http://dx.doi.org/10.3389/fgene.2018.00077 |
Ejemplares similares
-
Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation
por: Frei, Oleksandr, et al.
Publicado: (2019) -
Causal Inference of Genetic Variants and Genes in Amyotrophic Lateral Sclerosis
por: Pan, Siyu, et al.
Publicado: (2022) -
Genetically predicted adiponectin causally reduces the risk of chronic kidney disease, a bilateral and multivariable mendelian randomization study
por: Wu, Ruicheng, et al.
Publicado: (2022) -
Statistical Properties of Multivariate Distance Matrix Regression for High-Dimensional Data Analysis
por: Zapala, Matthew A., et al.
Publicado: (2012) -
Beyond SNP heritability: Polygenicity and discoverability of phenotypes estimated with a univariate Gaussian mixture model
por: Holland, Dominic, et al.
Publicado: (2020)